Big data analytics on flash storage with accelerators

Arvind
{"title":"Big data analytics on flash storage with accelerators","authors":"Arvind","doi":"10.1145/2967938.2970374","DOIUrl":null,"url":null,"abstract":"Complex analytics of the vast amount of data collected via social media, cell phones, ubiquitous smart sensors, and satellites is likely to be the biggest economic driver for the IT industry over the next decade. For many “Big Data” applications, the limiting factor in performance is often the transportation of large amount of data from hard disks to where it can be processed, i.e. DRAM. We will present BlueDBM, an architecture for a scalable distributed flash store which overcomes this limitation by providing a high-performance, high-capacity, scalable random-access flash storage, and by allowing computation near the data via a FPGA-based programmable flash controller. We will present the preliminary results for two applications, (1) key-value store (KVS) and (2) sparse-matrix accelerator for graph processing, on BlueDBM consisting of 20 nodes and 20TB of flash.","PeriodicalId":407717,"journal":{"name":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Parallel Architecture and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2967938.2970374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex analytics of the vast amount of data collected via social media, cell phones, ubiquitous smart sensors, and satellites is likely to be the biggest economic driver for the IT industry over the next decade. For many “Big Data” applications, the limiting factor in performance is often the transportation of large amount of data from hard disks to where it can be processed, i.e. DRAM. We will present BlueDBM, an architecture for a scalable distributed flash store which overcomes this limitation by providing a high-performance, high-capacity, scalable random-access flash storage, and by allowing computation near the data via a FPGA-based programmable flash controller. We will present the preliminary results for two applications, (1) key-value store (KVS) and (2) sparse-matrix accelerator for graph processing, on BlueDBM consisting of 20 nodes and 20TB of flash.
带加速器的闪存大数据分析
对通过社交媒体、手机、无处不在的智能传感器和卫星收集的大量数据进行复杂的分析,可能是未来十年IT行业最大的经济驱动力。对于许多“大数据”应用程序,性能的限制因素通常是将大量数据从硬盘传输到可以处理数据的地方,即DRAM。我们将介绍BlueDBM,一种可扩展的分布式闪存存储架构,它通过提供高性能、高容量、可扩展的随机访问闪存,并通过基于fpga的可编程闪存控制器允许在数据附近进行计算,从而克服了这一限制。我们将展示两个应用的初步结果,(1)键值存储(KVS)和(2)用于图形处理的稀疏矩阵加速器,在由20个节点和20TB闪存组成的BlueDBM上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信