Hodge bundles on smooth compactifications of Siegel varieties and applications

S. Yau, Yi Zhang
{"title":"Hodge bundles on smooth compactifications of Siegel varieties and applications","authors":"S. Yau, Yi Zhang","doi":"10.4310/ICCM.2019.V7.N2.A1","DOIUrl":null,"url":null,"abstract":"We study Hodge bundles on Siegel varieties and their various extensions to smooth toroidal compactifications. Precisely, we construct a canonical Hodge bundle on an arbitrary Siegel variety so that the holomorphic tangent bundle can be embedded into the Hodge bundle, and we observe that the Bergman metric on the Siegel variety is compatible with the induced Hodge metric. Therefore we obtain the asymptotic estimate of the Bergman metric explicitly. Depending on these properties and the uniformitarian of K\\\"ahler-Einstein manifold, we study extensions of the tangent bundle over any smooth toroidal compactification. We also apply this result, together with Siegel cusp modular forms, to study general type for Siegel varieties.","PeriodicalId":415664,"journal":{"name":"Notices of the International Congress of Chinese Mathematicians","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notices of the International Congress of Chinese Mathematicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/ICCM.2019.V7.N2.A1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study Hodge bundles on Siegel varieties and their various extensions to smooth toroidal compactifications. Precisely, we construct a canonical Hodge bundle on an arbitrary Siegel variety so that the holomorphic tangent bundle can be embedded into the Hodge bundle, and we observe that the Bergman metric on the Siegel variety is compatible with the induced Hodge metric. Therefore we obtain the asymptotic estimate of the Bergman metric explicitly. Depending on these properties and the uniformitarian of K\"ahler-Einstein manifold, we study extensions of the tangent bundle over any smooth toroidal compactification. We also apply this result, together with Siegel cusp modular forms, to study general type for Siegel varieties.
西格尔品种光滑紧实的霍奇束及其应用
研究了西格尔变种上的霍奇束及其对光滑环面紧化的各种扩展。精确地说,我们在任意西格尔变体上构造了一个规范的Hodge束,使得全纯切束可以嵌入到Hodge束中,并且我们观察到西格尔变体上的Bergman度规与诱导的Hodge度规是相容的。因此,我们明确地得到了Bergman度规的渐近估计。根据这些性质和K\ ahler-Einstein流形的均变性,我们研究了任意光滑环面紧化上切束的扩展。我们还将这一结果与西格尔尖模形式一起用于研究西格尔变种的一般类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信