{"title":"Tiltcasting: 3D Interaction on Large Displays using a Mobile Device","authors":"Krzysztof Pietroszek, James R. Wallace, E. Lank","doi":"10.1145/2807442.2807471","DOIUrl":null,"url":null,"abstract":"We develop and formally evaluate a metaphor for smartphone interaction with 3D environments: Tiltcasting. Under the Tiltcasting metaphor, users interact within a rotatable 2D plane that is \"cast\" from their phone's interactive display into 3D space. Through an empirical validation, we show that Tiltcasting supports efficient pointing, interaction with occluded objects, disambiguation between nearby objects, and object selection and manipulation in fully addressable 3D space. Our technique out-performs existing target agnostic pointing implementations, and approaches the performance of physical pointing with an off-the-shelf smartphone.","PeriodicalId":103668,"journal":{"name":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807442.2807471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
We develop and formally evaluate a metaphor for smartphone interaction with 3D environments: Tiltcasting. Under the Tiltcasting metaphor, users interact within a rotatable 2D plane that is "cast" from their phone's interactive display into 3D space. Through an empirical validation, we show that Tiltcasting supports efficient pointing, interaction with occluded objects, disambiguation between nearby objects, and object selection and manipulation in fully addressable 3D space. Our technique out-performs existing target agnostic pointing implementations, and approaches the performance of physical pointing with an off-the-shelf smartphone.