Clustering epileptiform discharges with an adaptive subspace self-organizing feature map: a simulation study

C. James, Dagmar Scott Fraser, D. Lowe
{"title":"Clustering epileptiform discharges with an adaptive subspace self-organizing feature map: a simulation study","authors":"C. James, Dagmar Scott Fraser, D. Lowe","doi":"10.1049/CP:20000344","DOIUrl":null,"url":null,"abstract":"We present the results of a study where synthetically generated Epileptiform Discharges (EDs) superimposed on normal background EEG are clustered by means of Kohonen's Self-Organizing Feature Map (SOFM) using a set of basis vectors representing adaptive subspaces in place of the more usual weight vector at each node of the network. A training set of synthetic EDs is generated using a spherical head model assuming current dipole ED generators. The synthetic EDs are superimposed onto normal background EEG and a preliminary pre-processing stage is used to extract Candidate EDs (CEDs) conshsting of ED and non-ED events. The data is clustered using an adaptive subspace algorithm and the resulting map is calibrated using the labeled synthetic data set. Preliminary results show that the SOFM is well suited to clustering the pre-processed CEDs, where strong clusters of 'real' EDs are evident. The next step of this research is to further our investigations into the clustering of EDs using real data extracted from the interictal EEG.","PeriodicalId":284288,"journal":{"name":"First International Conference on Advances in Medical Signal and Information Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Advances in Medical Signal and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/CP:20000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present the results of a study where synthetically generated Epileptiform Discharges (EDs) superimposed on normal background EEG are clustered by means of Kohonen's Self-Organizing Feature Map (SOFM) using a set of basis vectors representing adaptive subspaces in place of the more usual weight vector at each node of the network. A training set of synthetic EDs is generated using a spherical head model assuming current dipole ED generators. The synthetic EDs are superimposed onto normal background EEG and a preliminary pre-processing stage is used to extract Candidate EDs (CEDs) conshsting of ED and non-ED events. The data is clustered using an adaptive subspace algorithm and the resulting map is calibrated using the labeled synthetic data set. Preliminary results show that the SOFM is well suited to clustering the pre-processed CEDs, where strong clusters of 'real' EDs are evident. The next step of this research is to further our investigations into the clustering of EDs using real data extracted from the interictal EEG.
具有自适应子空间自组织特征映射的聚类癫痫样放电:仿真研究
我们展示了一项研究的结果,其中合成产生的癫痫状放电(EDs)叠加在正常背景脑电图上,通过Kohonen的自组织特征映射(SOFM)聚类,使用一组代表自适应子空间的基向量来代替网络每个节点上更常见的权重向量。采用球形头模型,假设有电流偶极子能谱发生器,生成了合成能谱的训练集。将合成的脑电信号叠加到正常背景脑电信号上,并进行初步预处理,提取由ED和非ED事件组成的候选ED (Candidate EDs)。使用自适应子空间算法对数据进行聚类,并使用标记的合成数据集校准生成的地图。初步结果表明,SOFM可以很好地聚类预处理ed,其中明显存在“真实”ed的强聚类。本研究的下一步是利用从间期脑电图中提取的真实数据进一步研究脑电信号的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信