Unsupervised Discovery of Scenario-Level Patterns for Information Extraction

R. Yangarber, R. Grishman, P. Tapanainen
{"title":"Unsupervised Discovery of Scenario-Level Patterns for Information Extraction","authors":"R. Yangarber, R. Grishman, P. Tapanainen","doi":"10.3115/974147.974186","DOIUrl":null,"url":null,"abstract":"Information Extraction (IE) systems are commonly based on pattern matching. Adapting an IE system to a new scenario entails the construction of a new pattern base---a time-consuming and expensive process. We have implemented a system for finding patterns automatically from un-annotated text. Starting with a small initial set of seed patterns proposed by the user, the system applies an incremental discovery procedure to identify new patterns. We present experiments with evaluations which show that the resulting patterns exhibit high precision and recall.","PeriodicalId":103133,"journal":{"name":"Applied Natural Language Processing Conference","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Natural Language Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/974147.974186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

Abstract

Information Extraction (IE) systems are commonly based on pattern matching. Adapting an IE system to a new scenario entails the construction of a new pattern base---a time-consuming and expensive process. We have implemented a system for finding patterns automatically from un-annotated text. Starting with a small initial set of seed patterns proposed by the user, the system applies an incremental discovery procedure to identify new patterns. We present experiments with evaluations which show that the resulting patterns exhibit high precision and recall.
信息抽取(IE)系统通常基于模式匹配。使IE系统适应新的场景需要构建新的模式库——这是一个耗时且昂贵的过程。我们已经实现了一个从未注释的文本中自动查找模式的系统。从用户提出的一组小的初始种子模式开始,系统应用增量发现过程来识别新的模式。我们提出的实验评估表明,所得到的模式具有较高的精度和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信