WaferHSL

Qijing Wang, Martin D. F. Wong
{"title":"WaferHSL","authors":"Qijing Wang, Martin D. F. Wong","doi":"10.1145/3508352.3549466","DOIUrl":null,"url":null,"abstract":"As the demand for semiconductor products increases and the integrated circuits (IC) processes become more and more complex, wafer failure pattern classification is gaining more attention from manufacturers and researchers to improve yield. To further cope with the real-world scenario that there are only very limited labeled data and without any unlabeled data in the early manufacturing stage of new products, this work proposes an efficient human-like staged learning framework for wafer failure pattern classification named WaferHSL. Inspired by human’s knowledge acquisition process, a mutually reinforcing task fusion scheme is designed for guiding the deep learning model to simultaneously establish the knowledge of spatial relationships, geometry properties and semantics. Furthermore, a progressive stage controller is deployed to partition and control the learning process, so as to enable human-like progressive advancement in the model. Experimental results show that with only 10% labeled samples and no unlabeled samples, WaferHSL can achieve better results than previous SOTA methods trained with 60% labeled samples and a large number of unlabeled samples, while the improvement is even more significant when using the same size of labeled training set.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the demand for semiconductor products increases and the integrated circuits (IC) processes become more and more complex, wafer failure pattern classification is gaining more attention from manufacturers and researchers to improve yield. To further cope with the real-world scenario that there are only very limited labeled data and without any unlabeled data in the early manufacturing stage of new products, this work proposes an efficient human-like staged learning framework for wafer failure pattern classification named WaferHSL. Inspired by human’s knowledge acquisition process, a mutually reinforcing task fusion scheme is designed for guiding the deep learning model to simultaneously establish the knowledge of spatial relationships, geometry properties and semantics. Furthermore, a progressive stage controller is deployed to partition and control the learning process, so as to enable human-like progressive advancement in the model. Experimental results show that with only 10% labeled samples and no unlabeled samples, WaferHSL can achieve better results than previous SOTA methods trained with 60% labeled samples and a large number of unlabeled samples, while the improvement is even more significant when using the same size of labeled training set.
WaferHSL
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信