{"title":"Intersection graphs of Jordan arcs","authors":"Patrice Ossona de Mendez, H. D. Fraysseix","doi":"10.1090/dimacs/049/02","DOIUrl":null,"url":null,"abstract":"A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.","PeriodicalId":144845,"journal":{"name":"Contemporary Trends in Discrete Mathematics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Trends in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/049/02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A family of Jordan arcs, such that two arcs are nowhere tangent, defines a hypergraph whose vertices are the arcs and whose edges are the intersection points. We shall say that the hypergraph has a strong intersection representation and, if each intersection point is interior to at most one arc, we shall say that the hypergraph has a strong contact representation. We first characterize those hypergraphs which have a strong contact representation and deduce some sufficient conditions for a simple planar graph to have a strong intersection representation. Then, using the Four Color Theorem, we prove that a large class of simple planar graphs have a strong intersection representation.