Naive Learning Through Probability Matching

Itai Arieli, Y. Babichenko, Manuel Mueller-Frank
{"title":"Naive Learning Through Probability Matching","authors":"Itai Arieli, Y. Babichenko, Manuel Mueller-Frank","doi":"10.2139/ssrn.3338015","DOIUrl":null,"url":null,"abstract":"We analyze boundedly rational updating in a repeated interaction network model with binary states and actions. We decompose the updating procedure into a deterministic stationary Markov belief updating component inspired by DeGroot updating and pair it with a random probability matching strategy that assigns probabilities to the actions given the underlying boundedly rational belief. This approach allows overcoming the impediments to consensus and naive learning inherent in deterministic updating functions in coarse action environments. We show that if a sequence of growing networks satisfies vanishing influence, then the eventual consensus action equals the realized state with a probability converging to one.","PeriodicalId":416173,"journal":{"name":"Proceedings of the 2019 ACM Conference on Economics and Computation","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Conference on Economics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3338015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We analyze boundedly rational updating in a repeated interaction network model with binary states and actions. We decompose the updating procedure into a deterministic stationary Markov belief updating component inspired by DeGroot updating and pair it with a random probability matching strategy that assigns probabilities to the actions given the underlying boundedly rational belief. This approach allows overcoming the impediments to consensus and naive learning inherent in deterministic updating functions in coarse action environments. We show that if a sequence of growing networks satisfies vanishing influence, then the eventual consensus action equals the realized state with a probability converging to one.
研究了具有二元状态和二元动作的重复交互网络模型的有界理性更新问题。我们将更新过程分解为受DeGroot更新启发的确定性平稳马尔可夫信念更新组件,并将其与随机概率匹配策略配对,该策略为给定底层有界理性信念的行为分配概率。这种方法可以克服粗糙动作环境中确定性更新函数固有的共识和幼稚学习的障碍。我们证明了如果一个不断增长的网络序列满足逐渐消失的影响,那么最终的共识行为等于实现状态,并以收敛于1的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信