{"title":"CMOS Compatible Dual Avalanche Photodiode for Algorithmic Visible Spectral Sensing","authors":"M. M. Hossain, M. Hayat","doi":"10.1109/IPCon.2019.8908395","DOIUrl":null,"url":null,"abstract":"A previously reported CMOS-compatible dual avalanche photodiode design is exploited to develop a maximum-likelihood spectral-sensing algorithm, which maps the dual photocurrents to the monochromatic light's wavelength. Optimization over the reverse biases of the two APDs yields a spectral resolution of 10 nm within 440–650 nm.","PeriodicalId":314151,"journal":{"name":"2019 IEEE Photonics Conference (IPC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCon.2019.8908395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A previously reported CMOS-compatible dual avalanche photodiode design is exploited to develop a maximum-likelihood spectral-sensing algorithm, which maps the dual photocurrents to the monochromatic light's wavelength. Optimization over the reverse biases of the two APDs yields a spectral resolution of 10 nm within 440–650 nm.