Affordance detection with Dynamic-Tree Capsule Networks

A. Rodr'iguez-S'anchez, Simon Haller-Seeber, David Peer, Chris Engelhardt, Jakob Mittelberger, Matteo Saveriano
{"title":"Affordance detection with Dynamic-Tree Capsule Networks","authors":"A. Rodr'iguez-S'anchez, Simon Haller-Seeber, David Peer, Chris Engelhardt, Jakob Mittelberger, Matteo Saveriano","doi":"10.1109/Humanoids53995.2022.10000190","DOIUrl":null,"url":null,"abstract":"Affordance detection from visual input is a fundamental step in autonomous robotic manipulation. Existing solutions to the problem of affordance detection rely on convolutional neural networks. However, these networks do not consider the spatial arrangement of the input data and miss parts-to-whole relationships. Therefore, they fall short when confronted with novel, previously unseen object instances or new viewpoints. One solution to overcome such limitations can be to resort to capsule networks. In this paper, we introduce the first affordance detection network based on dynamic treestructured capsules for sparse 3D point clouds. We show that our capsule-based network outperforms current state-of-the-art models on viewpoint invariance and parts-segmentation of new object instances through a novel dataset we only used for evaluation and it is publicly available from github.com/gipfelen/DTCG-Net. In the experimental evaluation we will show that our algorithm is superior to current affordance detection methods when faced with grasping previously unseen objects thanks to our Capsule Network enforcing a parts-to-whole representation.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Affordance detection from visual input is a fundamental step in autonomous robotic manipulation. Existing solutions to the problem of affordance detection rely on convolutional neural networks. However, these networks do not consider the spatial arrangement of the input data and miss parts-to-whole relationships. Therefore, they fall short when confronted with novel, previously unseen object instances or new viewpoints. One solution to overcome such limitations can be to resort to capsule networks. In this paper, we introduce the first affordance detection network based on dynamic treestructured capsules for sparse 3D point clouds. We show that our capsule-based network outperforms current state-of-the-art models on viewpoint invariance and parts-segmentation of new object instances through a novel dataset we only used for evaluation and it is publicly available from github.com/gipfelen/DTCG-Net. In the experimental evaluation we will show that our algorithm is superior to current affordance detection methods when faced with grasping previously unseen objects thanks to our Capsule Network enforcing a parts-to-whole representation.
动态树胶囊网络的可视性检测
视觉输入的可视性检测是机器人自主操作的基本步骤。现有的可用性检测方法依赖于卷积神经网络。然而,这些网络没有考虑输入数据的空间排列,忽略了部分到整体的关系。因此,当面对新奇的、以前未见过的对象实例或新的观点时,它们就会失败。克服这种限制的一个解决方案是使用胶囊网络。本文首次提出了基于动态树状结构胶囊的稀疏三维点云可视性检测网络。我们表明,我们基于胶囊的网络在视点不变性和新对象实例的部件分割方面优于当前最先进的模型,通过我们仅用于评估的新数据集,该数据集可从github.com/gipfelen/DTCG-Net公开获得。在实验评估中,我们将证明我们的算法在面对抓取以前未见过的物体时优于当前的可视性检测方法,这要归功于我们的胶囊网络执行了部分到整体的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信