Bio-inspired system architecture for energy efficient, BIGDATA computing with application to wide area motion imagery

A. Andreou, Tomas Figliolia, Kayode A. Sanni, Thomas S. Murray, Gaspar Tognetti, Daniel R. Mendat, J. Molin, M. Villemur, P. Pouliquen, P. Julián, R. Etienne-Cummings, I. Doxas
{"title":"Bio-inspired system architecture for energy efficient, BIGDATA computing with application to wide area motion imagery","authors":"A. Andreou, Tomas Figliolia, Kayode A. Sanni, Thomas S. Murray, Gaspar Tognetti, Daniel R. Mendat, J. Molin, M. Villemur, P. Pouliquen, P. Julián, R. Etienne-Cummings, I. Doxas","doi":"10.1109/LASCAS.2016.7450995","DOIUrl":null,"url":null,"abstract":"In this paper we discuss a brain-inspired system architecture for real-time big velocity BIGDATA processing that originates in large format tiled imaging arrays used in wide area motion imagery ubiquitous surveillance. High performance and high throughput is achieved through approximate computing and fixed point arithmetic in a variable precision (6 bits to 18 bits) architecture. The architecture implements a variety of processing algorithms classes ranging from convolutional networks (Con-vNets) to linear and non-linear morphological processing, probabilistic inference using exact and approximate Bayesian methods and ConvNet based classification. The processing pipeline is implemented entirely using event based neuromorphic and stochastic computational primitives. The system is capable of processing in real-time 160 × 120 raw pixel data running on a reconfigurable computing platform (5 Xilinx Kintex-7 FPGAs). The reconfigurable computing implementation was developed to emulate the computational structures for a 3D System on Chip (3D-SOC) that will be fabricated in the 55nm CMOS technology and it has a dual goal: (i) algorithm exploration and (ii) architecture exploration.","PeriodicalId":129875,"journal":{"name":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Latin American Symposium on Circuits & Systems (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS.2016.7450995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we discuss a brain-inspired system architecture for real-time big velocity BIGDATA processing that originates in large format tiled imaging arrays used in wide area motion imagery ubiquitous surveillance. High performance and high throughput is achieved through approximate computing and fixed point arithmetic in a variable precision (6 bits to 18 bits) architecture. The architecture implements a variety of processing algorithms classes ranging from convolutional networks (Con-vNets) to linear and non-linear morphological processing, probabilistic inference using exact and approximate Bayesian methods and ConvNet based classification. The processing pipeline is implemented entirely using event based neuromorphic and stochastic computational primitives. The system is capable of processing in real-time 160 × 120 raw pixel data running on a reconfigurable computing platform (5 Xilinx Kintex-7 FPGAs). The reconfigurable computing implementation was developed to emulate the computational structures for a 3D System on Chip (3D-SOC) that will be fabricated in the 55nm CMOS technology and it has a dual goal: (i) algorithm exploration and (ii) architecture exploration.
生物启发的系统架构节能,大数据计算应用于广域运动图像
在本文中,我们讨论了一种受大脑启发的系统架构,用于实时大速度大数据处理,该系统起源于用于广域运动图像无处不在监视的大幅面平铺成像阵列。在可变精度(6 ~ 18位)架构下,通过近似计算和定点算法实现了高性能和高吞吐量。该体系结构实现了各种处理算法类,从卷积网络(Con-vNets)到线性和非线性形态处理,使用精确和近似贝叶斯方法的概率推理以及基于ConvNet的分类。处理管道完全使用基于事件的神经形态和随机计算原语实现。该系统能够在可重构计算平台(5个Xilinx Kintex-7 fpga)上实时处理160 × 120原始像素数据。可重构计算实现是为了模拟3D片上系统(3D- soc)的计算结构而开发的,3D- soc将采用55纳米CMOS技术制造,它有两个目标:(i)算法探索和(ii)架构探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信