Deforestation Detection in the Brazilian Amazon Using Transformer-based Networks

Mariam Alshehri, Anes Ouadou, Grant J Scott
{"title":"Deforestation Detection in the Brazilian Amazon Using Transformer-based Networks","authors":"Mariam Alshehri, Anes Ouadou, Grant J Scott","doi":"10.1109/CAI54212.2023.00130","DOIUrl":null,"url":null,"abstract":"Deforestation is a critical environmental issue that has far-reaching impacts on climate change, biodiversity, and the livelihoods of local communities. Conventional methods such as field surveys and map interpretation are not feasible, especially in vast regions like the Brazilian Amazon. In this paper, we adapt ChangeFormer, a transformer-based change detection model, to detect deforestation in the Brazilian Amazon, leveraging the attention mechanism to capture spatial and temporal dependencies in bi-temporal satellite images. To evaluate the model’s performance, we implemented a rigorous methodology to create a deforestation detection dataset using Sentinel-2 images of selected conservation units in the Brazilian Amazon during 2020 and 2021. The model achieved a high accuracy of 94%, demonstrating the potential of transformer-based networks for accurate and efficient deforestation detection.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deforestation is a critical environmental issue that has far-reaching impacts on climate change, biodiversity, and the livelihoods of local communities. Conventional methods such as field surveys and map interpretation are not feasible, especially in vast regions like the Brazilian Amazon. In this paper, we adapt ChangeFormer, a transformer-based change detection model, to detect deforestation in the Brazilian Amazon, leveraging the attention mechanism to capture spatial and temporal dependencies in bi-temporal satellite images. To evaluate the model’s performance, we implemented a rigorous methodology to create a deforestation detection dataset using Sentinel-2 images of selected conservation units in the Brazilian Amazon during 2020 and 2021. The model achieved a high accuracy of 94%, demonstrating the potential of transformer-based networks for accurate and efficient deforestation detection.
基于变压器网络的巴西亚马逊森林砍伐检测
森林砍伐是一个严重的环境问题,对气候变化、生物多样性和当地社区的生计产生深远影响。传统的方法,如实地调查和地图解释是不可行的,特别是在像巴西亚马逊这样的广大地区。在本文中,我们采用基于变压器的变化检测模型ChangeFormer来检测巴西亚马逊地区的森林砍伐,利用注意力机制捕获双时相卫星图像中的时空依赖关系。为了评估模型的性能,我们采用了一种严格的方法,使用2020年和2021年巴西亚马逊选定保护单元的Sentinel-2图像创建了森林砍伐检测数据集。该模型达到了94%的高精度,证明了基于变压器的网络在准确有效地检测森林砍伐方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信