RECOGNITION OF CYBER THREATS ON THE ADAPTIVE NETWORK TOPOLOGY OF LARGE-SCALE SYSTEMS BASED ON A RECURRENT NEURAL NETWORK

E. Pavlenko, Nikita Gololobov, D. Lavrova, Andrey Kozachok
{"title":"RECOGNITION OF CYBER THREATS ON THE ADAPTIVE NETWORK TOPOLOGY OF LARGE-SCALE SYSTEMS BASED ON A RECURRENT NEURAL NETWORK","authors":"E. Pavlenko, Nikita Gololobov, D. Lavrova, Andrey Kozachok","doi":"10.21681/2311-3456-2022-6-93-99","DOIUrl":null,"url":null,"abstract":"The purpose of the article: the development of a method for recognizing cyber threats in adaptive network topologies of large-scale systems based on a recurrent neural network with a long short-term memory. Main research methods: system analysis of existing recognition methods, theoretical formalization, experiment Result: The approach showed a satisfactory efficiency of cyber threat recognition, and the results of the research made it possible to put forward proposals for the further development of this area. Scientific novelty: A model of adaptive network topology is formulated and a new way of recognizing cyber threats on the adaptive network topology of large-scale systems is proposed.","PeriodicalId":422818,"journal":{"name":"Voprosy kiberbezopasnosti","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Voprosy kiberbezopasnosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21681/2311-3456-2022-6-93-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the article: the development of a method for recognizing cyber threats in adaptive network topologies of large-scale systems based on a recurrent neural network with a long short-term memory. Main research methods: system analysis of existing recognition methods, theoretical formalization, experiment Result: The approach showed a satisfactory efficiency of cyber threat recognition, and the results of the research made it possible to put forward proposals for the further development of this area. Scientific novelty: A model of adaptive network topology is formulated and a new way of recognizing cyber threats on the adaptive network topology of large-scale systems is proposed.
基于递归神经网络的大规模系统自适应网络拓扑网络威胁识别
本文的目的:基于具有长短期记忆的递归神经网络,开发一种识别大规模系统自适应网络拓扑中的网络威胁的方法。主要研究方法:对现有识别方法进行系统分析,理论形式化,实验结果:该方法显示了令人满意的网络威胁识别效率,研究结果为该领域的进一步发展提出了建议。新颖性:建立了自适应网络拓扑模型,提出了一种基于大规模系统自适应网络拓扑的网络威胁识别新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信