Hybrid intelligent methods for microarray data analysis

P. Ganeshkumar, Ku-Jin Kim
{"title":"Hybrid intelligent methods for microarray data analysis","authors":"P. Ganeshkumar, Ku-Jin Kim","doi":"10.1109/BIBE.2015.7367704","DOIUrl":null,"url":null,"abstract":"Data produced out of microarray experiments are of great use for the physician when it is presented in a meaningful manner. This paper proposes hybrid intelligent methods for addressing the challenges in analyzing the microarray data. The concept of fuzzy and rough set is hybridized with FInformation (FRFI) for gene selection. An optimal fuzzy logic based classifier (FLC) is developed for sample classification using a hybrid Genetic Swarm Algorithm (GSA). Detailed experiments are conducted using microarray data related to Cancer and Rheumatoid Arthritis. From the simulation study, it is found that the proposed FRFI-FLC-GSA produces compact classification system with reasonably good informative genes that can be used for disease diagnosis.","PeriodicalId":422807,"journal":{"name":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2015.7367704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data produced out of microarray experiments are of great use for the physician when it is presented in a meaningful manner. This paper proposes hybrid intelligent methods for addressing the challenges in analyzing the microarray data. The concept of fuzzy and rough set is hybridized with FInformation (FRFI) for gene selection. An optimal fuzzy logic based classifier (FLC) is developed for sample classification using a hybrid Genetic Swarm Algorithm (GSA). Detailed experiments are conducted using microarray data related to Cancer and Rheumatoid Arthritis. From the simulation study, it is found that the proposed FRFI-FLC-GSA produces compact classification system with reasonably good informative genes that can be used for disease diagnosis.
微阵列数据分析的混合智能方法
当微阵列实验产生的数据以有意义的方式呈现时,它对医生有很大的用处。本文提出了一种混合智能方法来解决微阵列数据分析中的挑战。将模糊和粗糙集的概念与信息(FRFI)相结合,进行基因选择。利用混合遗传群算法(GSA),提出了一种基于模糊逻辑的样本分类器(FLC)。详细的实验进行了使用微阵列数据有关癌症和类风湿关节炎。从模拟研究中发现,所提出的FRFI-FLC-GSA产生了紧凑的分类系统,具有相当好的信息基因,可用于疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信