Analysis of Neural Networks for Object Detection using Image Processing Techniques

R. Praveena, T. Babu, K. Sakthimurugan, G. Sudha, M. Birunda, J. Surendiran
{"title":"Analysis of Neural Networks for Object Detection using Image Processing Techniques","authors":"R. Praveena, T. Babu, K. Sakthimurugan, G. Sudha, M. Birunda, J. Surendiran","doi":"10.1109/ICICICT54557.2022.9917833","DOIUrl":null,"url":null,"abstract":"Moving real-world object detection is still a difficult task. Whilst recent research data sets increase the number of training sets and test examples to get closer to real world problems, it is another important question apart from accuracy that detectors can process large data sets in reasonable time. Not only the education instances, but the number of classes is significant. Moving object detection requires finding items in a video sequence frame. An object detection mechanism in either frame is needed in - form of monitoring, or when the object first appears in the film. Different history strategies used in the literature have been simulated during moving object detection. In this study we implement a Gaussian mixture analysis and backward propagation using neural network for object detection.","PeriodicalId":246214,"journal":{"name":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICICT54557.2022.9917833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Moving real-world object detection is still a difficult task. Whilst recent research data sets increase the number of training sets and test examples to get closer to real world problems, it is another important question apart from accuracy that detectors can process large data sets in reasonable time. Not only the education instances, but the number of classes is significant. Moving object detection requires finding items in a video sequence frame. An object detection mechanism in either frame is needed in - form of monitoring, or when the object first appears in the film. Different history strategies used in the literature have been simulated during moving object detection. In this study we implement a Gaussian mixture analysis and backward propagation using neural network for object detection.
利用图像处理技术进行目标检测的神经网络分析
移动现实世界的目标检测仍然是一项艰巨的任务。虽然最近的研究数据集增加了训练集和测试示例的数量,以更接近现实世界的问题,但除了准确性之外,检测器能否在合理的时间内处理大型数据集是另一个重要的问题。不仅是教育实例,班级数量也很重要。移动目标检测需要在视频序列帧中找到项目。在任何一帧中都需要一个对象检测机制,以监视的形式,或者当对象首次出现在胶片中时。在运动目标检测过程中,模拟了文献中使用的不同历史策略。在本研究中,我们使用神经网络实现高斯混合分析和反向传播的目标检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信