Robust Image Denoising for Sonar Imagery

Avi Abu, R. Diamant
{"title":"Robust Image Denoising for Sonar Imagery","authors":"Avi Abu, R. Diamant","doi":"10.1109/OCEANSKOBE.2018.8559398","DOIUrl":null,"url":null,"abstract":"The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles, and aimed to scan the sea floor and detect objects. An important part of sonar detection is the image denoising, where the background is smoothed and noise components are removed while preserving the object's borders. Sonar image denoising is a challenging task, mostly due to the heavy intensity inhomogeneity of the background and the heavy spatial varying background. In this paper, we propose an algorithm for sonar image denoising that is based on the adaptation of the nonlocal means-based filter. The noise in the highlight and background regions is modeled by the exponential distribution, while the noise in the shadow region is modeled by the Gaussian distribution. We estimate the label of each pixel through image segmentation to estimate the parameters of each distribution. Then, the minimum entropy criteria is used to decide which statistics model in the denoising filter gives the best results. Results for synthetic sonar images and over real sonar images demonstrate that the proposed method successfully removes the noise components while preserving the object's edges.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The recent boost in undersea operations has led to the development of high-resolution sonar systems mounted on autonomous vehicles, and aimed to scan the sea floor and detect objects. An important part of sonar detection is the image denoising, where the background is smoothed and noise components are removed while preserving the object's borders. Sonar image denoising is a challenging task, mostly due to the heavy intensity inhomogeneity of the background and the heavy spatial varying background. In this paper, we propose an algorithm for sonar image denoising that is based on the adaptation of the nonlocal means-based filter. The noise in the highlight and background regions is modeled by the exponential distribution, while the noise in the shadow region is modeled by the Gaussian distribution. We estimate the label of each pixel through image segmentation to estimate the parameters of each distribution. Then, the minimum entropy criteria is used to decide which statistics model in the denoising filter gives the best results. Results for synthetic sonar images and over real sonar images demonstrate that the proposed method successfully removes the noise components while preserving the object's edges.
声纳图像的鲁棒图像去噪
最近海底作业的增加导致了安装在自动驾驶车辆上的高分辨率声纳系统的发展,旨在扫描海底并探测物体。声纳检测的一个重要部分是图像去噪,即在保持目标边界的同时对背景进行平滑处理,去除噪声成分。声纳图像的去噪是一项具有挑战性的任务,主要是由于背景的强烈非均匀性和大的空间变化。本文提出了一种基于非局部均值滤波自适应的声纳图像去噪算法。高光和背景区域的噪声采用指数分布建模,阴影区域的噪声采用高斯分布建模。我们通过图像分割来估计每个像素的标签,从而估计每个分布的参数。然后,使用最小熵准则来决定哪个统计模型在去噪滤波器中给出最好的结果。合成声呐图像和真实声呐图像的实验结果表明,该方法在保留目标边缘的同时,成功地去除了噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信