{"title":"On criticality coupled sub-Laplacian systems with Hardy type potentials on Stratified Lie groups","authors":"Jinguo Zhang, Shuhai Zhu","doi":"10.3934/cam.2023005","DOIUrl":null,"url":null,"abstract":"In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group\n\n \\begin{document}$ \\begin{equation*} \\left\\{\\begin{aligned} &-\\Delta_{\\mathbb{G}}u = \\frac{\\psi^{\\alpha}|u|^{2^*(\\alpha)-2}u}{d(z)^{\\alpha}}+ \\frac{p_{1}}{2^*(\\gamma)}\\frac{\\psi^{\\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\\gamma}} +\\lambda h(z)\\frac{\\psi^{\\sigma}|u|^{q-2}u}{d(z)^{\\sigma}} \\, \\, & \\text{in } \\, \\, \\Omega, \\\\ &-\\Delta_{\\mathbb{G}}v = \\frac{\\psi^{\\beta}|v|^{2^*(\\beta)-2}v}{d(z)^{\\beta}}+ \\frac{p_{2}}{2^*(\\gamma)}\\frac{\\psi^{\\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\\gamma}} +\\lambda h(z)\\frac{\\psi^{\\sigma}|v|^{q-2}v}{d(z)^{\\sigma}}\\, \\, &\\text{in } \\, \\, \\Omega, \\\\ &\\quad u = v = 0\\, \\, &\\text{on } \\, \\, \\partial\\Omega, \\end{aligned}\\right. \\end{equation*} $\\end{document} \nwhere $ -\\Delta_{\\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \\mathbb{G} $, $ \\alpha, \\beta, \\gamma, \\sigma\\in [0, 2) $, $ d $ is the $ \\Delta_{\\mathbb{G}} $-natural gauge, $ \\psi = |\\nabla_{\\mathbb{G}}d| $ and $ \\nabla_{\\mathbb{G}} $ is the horizontal gradient associated to $ \\Delta_{\\mathbb{G}} $. The positive parameters $ \\lambda $, $ q $ satisfy $ 0 < \\lambda < \\infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\\gamma) $, here $ 2^*(\\alpha): = \\frac{2(Q-\\alpha)}{Q-2} $, $ 2^*(\\beta): = \\frac{2(Q-\\beta)}{Q-2} $ and $ 2^*(\\gamma) = \\frac{2(Q-\\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \\mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group
\begin{document}$ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $\end{document}
where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.
In this work, our main concern is to study the existence and multiplicity of solutions for the following sub-elliptic system with Hardy type potentials and multiple critical exponents on Carnot group \begin{document}$ \begin{equation*} \left\{\begin{aligned} &-\Delta_{\mathbb{G}}u = \frac{\psi^{\alpha}|u|^{2^*(\alpha)-2}u}{d(z)^{\alpha}}+ \frac{p_{1}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}-2}u|v|^{p_{2}}}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|u|^{q-2}u}{d(z)^{\sigma}} \, \, & \text{in } \, \, \Omega, \\ &-\Delta_{\mathbb{G}}v = \frac{\psi^{\beta}|v|^{2^*(\beta)-2}v}{d(z)^{\beta}}+ \frac{p_{2}}{2^*(\gamma)}\frac{\psi^{\gamma}|u|^{p_{1}}|v|^{p_{2}-2}v}{d(z, z_{0})^{\gamma}} +\lambda h(z)\frac{\psi^{\sigma}|v|^{q-2}v}{d(z)^{\sigma}}\, \, &\text{in } \, \, \Omega, \\ &\quad u = v = 0\, \, &\text{on } \, \, \partial\Omega, \end{aligned}\right. \end{equation*} $\end{document} where $ -\Delta_{\mathbb{G}} $ is a sub-Laplacian on Carnot group $ \mathbb{G} $, $ \alpha, \beta, \gamma, \sigma\in [0, 2) $, $ d $ is the $ \Delta_{\mathbb{G}} $-natural gauge, $ \psi = |\nabla_{\mathbb{G}}d| $ and $ \nabla_{\mathbb{G}} $ is the horizontal gradient associated to $ \Delta_{\mathbb{G}} $. The positive parameters $ \lambda $, $ q $ satisfy $ 0 < \lambda < \infty $, $ 1 < q < 2 $, and $ p_{1} $, $ p_{2} > 1 $ with $ p_{1}+p_{2} = 2^*(\gamma) $, here $ 2^*(\alpha): = \frac{2(Q-\alpha)}{Q-2} $, $ 2^*(\beta): = \frac{2(Q-\beta)}{Q-2} $ and $ 2^*(\gamma) = \frac{2(Q-\gamma)}{Q-2} $ are the critical Hardy-Sobolev exponents, $ Q $ is the homogeneous dimension of the space $ \mathbb{G} $. By means of variational methods and the mountain-pass theorem of Ambrosetti and Rabonowitz, we study the existence of multiple solutions to the sub-elliptic system.