Decision time horizon for music genre classification using short time features

P. Ahrendt, Anders Meng, J. Larsen
{"title":"Decision time horizon for music genre classification using short time features","authors":"P. Ahrendt, Anders Meng, J. Larsen","doi":"10.5281/ZENODO.38612","DOIUrl":null,"url":null,"abstract":"In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tapped-delay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion1 such as dynamic PCA (DPCA). The most frequently suggested features in the literature were employed including melfrequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied. A Gaussian classifier (GC) with full covariance structure and a linear neural network (NN) classifier are used.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper music genre classification has been explored with special emphasis on the decision time horizon and ranking of tapped-delay-line short-time features. Late information fusion as e.g. majority voting is compared with techniques of early information fusion1 such as dynamic PCA (DPCA). The most frequently suggested features in the literature were employed including melfrequency cepstral coefficients (MFCC), linear prediction coefficients (LPC), zero-crossing rate (ZCR), and MPEG-7 features. To rank the importance of the short time features consensus sensitivity analysis is applied. A Gaussian classifier (GC) with full covariance structure and a linear neural network (NN) classifier are used.
基于短时间特征的音乐类型分类决策时间范围
本文对音乐类型分类进行了探讨,重点讨论了抽头延迟线短时间特征的决策时间范围和排序问题。将多数投票等后期信息融合技术与动态主成分分析(DPCA)等早期信息融合技术进行了比较。采用文献中最常提出的特征包括melfrequency倒谱系数(MFCC)、线性预测系数(LPC)、零交叉率(ZCR)和MPEG-7特征。为了对短时间特征的重要性进行排序,采用了共识敏感性分析。采用全协方差结构的高斯分类器和线性神经网络分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信