M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi
{"title":"Towards discovery of eras in social networks","authors":"M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale, D. Pedreschi","doi":"10.1109/ICDEW.2010.5452713","DOIUrl":null,"url":null,"abstract":"In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.","PeriodicalId":442345,"journal":{"name":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDEW.2010.5452713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.