T. Kutzner, Ingrid Bönninger, C. Travieso, M. Dutta, Anushikha Singh
{"title":"Study of long-term quality of online signature verification systems","authors":"T. Kutzner, Ingrid Bönninger, C. Travieso, M. Dutta, Anushikha Singh","doi":"10.1109/CCINTELS.2016.7878206","DOIUrl":null,"url":null,"abstract":"Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.","PeriodicalId":158982,"journal":{"name":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2016.7878206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.