Study of long-term quality of online signature verification systems

T. Kutzner, Ingrid Bönninger, C. Travieso, M. Dutta, Anushikha Singh
{"title":"Study of long-term quality of online signature verification systems","authors":"T. Kutzner, Ingrid Bönninger, C. Travieso, M. Dutta, Anushikha Singh","doi":"10.1109/CCINTELS.2016.7878206","DOIUrl":null,"url":null,"abstract":"Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.","PeriodicalId":158982,"journal":{"name":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","volume":"156 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Communication Control and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCINTELS.2016.7878206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Real handwriting authentication systems need a robust writer identification over a long time period. The paper analyzes signature sessions of the ATV-Signature Long Term Database (ATV-SLT DB). The database contains 6 sessions generated by 27 users over 15 month. The quality change of the verification results over a period of 15 month is examined. 64static and dynamic biometric features from the ATV-SLT DB sessions are extracted and 3 different classifiers are used. For the impostor test a 7th session is added, the impostor session, with 6 signatures for each user. The best result of 99.17% success rate for a correct classification is reached with the k-Nearest Neighbor classifier. The best result of 2.47% false accepted rate is reached with Naïve Bayes classifier.
在线签名验证系统的长期质量研究
真正的手写认证系统需要长时间的可靠的写信人识别。本文分析了atv -签名长期数据库(ATV-SLT DB)的签名会话。该数据库包含27个用户在15个月内生成的6个会话。对15个月内验证结果的质量变化进行检查。从ATV-SLT数据库会话中提取64个静态和动态生物特征,并使用3种不同的分类器。对于冒名顶替者测试,添加了第7个会话,冒名顶替者会话,每个用户有6个签名。k-最近邻分类器的分类成功率达到99.17%的最佳结果。使用Naïve贝叶斯分类器可以达到2.47%的误接受率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信