Vraj Patel, Jayant Vagajiyani, Rushikesh Nayi, Dhaval Sagar, Jay Rakholiya, Sathish Dharmalingam
{"title":"Development and Testing of V-8 Electromagnetic Engine","authors":"Vraj Patel, Jayant Vagajiyani, Rushikesh Nayi, Dhaval Sagar, Jay Rakholiya, Sathish Dharmalingam","doi":"10.1109/ICICCSP53532.2022.9862456","DOIUrl":null,"url":null,"abstract":"The electromagnetic engine is similar to the conventional internal combustion engines that are commonly utilized to meet daily demands. With the growing population, there are many chances that non-renewable resources may be depleted in the near future. As a result, those resources have been depleted, and pollution has increased. As a result, it's critical to create an engine that can function with a different alternative or source. Internal combustion engines use fossil fuels, which are inefficient since they emit a lot of pollution and are nonrenewable energy sources. The construction of an electromagnetic engine can address all of these concerns. The magnetic qualities of repulsion and attraction are used to operate the electromagnetic engine. The connecting rod, piston, crankshaft, and other components of a classic internal combustion engine are included in this system. This project's purpose is to develop and build an electromagnetic engine that can power an unmanned aerial vehicle's propeller. The engine has been tested for voltage ranges from 12 V to 24 V. Force, torque, and efficiency have been calculated. Airspeed behind the propeller and RPM have been measured using a pitot-static probe and a tachometer, respectively.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electromagnetic engine is similar to the conventional internal combustion engines that are commonly utilized to meet daily demands. With the growing population, there are many chances that non-renewable resources may be depleted in the near future. As a result, those resources have been depleted, and pollution has increased. As a result, it's critical to create an engine that can function with a different alternative or source. Internal combustion engines use fossil fuels, which are inefficient since they emit a lot of pollution and are nonrenewable energy sources. The construction of an electromagnetic engine can address all of these concerns. The magnetic qualities of repulsion and attraction are used to operate the electromagnetic engine. The connecting rod, piston, crankshaft, and other components of a classic internal combustion engine are included in this system. This project's purpose is to develop and build an electromagnetic engine that can power an unmanned aerial vehicle's propeller. The engine has been tested for voltage ranges from 12 V to 24 V. Force, torque, and efficiency have been calculated. Airspeed behind the propeller and RPM have been measured using a pitot-static probe and a tachometer, respectively.