Arithmetical Comprehension

J. Stillwell
{"title":"Arithmetical Comprehension","authors":"J. Stillwell","doi":"10.23943/princeton/9780691196411.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter focuses on arithmetical comprehension. Arithmetical comprehension is the most obvious set existence axiom to use when developing analysis in a system based on Peano arithmetic (PA) with set variables. This axiom asserts the existence of a set X of natural numbers for each property φ‎ definable in the language of PA. More precisely, if φ‎(n) is a property defined in the language of PA plus set variables, but with no set quantifiers, then there is a set X whose members are the natural numbers n such that φ‎(n). Since all such formulas φ‎ are asserted for, the arithmetical comprehension axiom is really an axiom schema. The reason set variables are allowed in φ‎ is to enable sets to be defined in terms of “given” sets. The reason set quantifiers are disallowed in φ‎ is to avoid definitions in which a set is defined in terms of all sets of natural numbers (and hence in terms of itself). The system consisting of PA plus arithmetical comprehension is called ACA0. This system lies at a remarkable “sweet spot” among axiom systems for analysis.","PeriodicalId":199607,"journal":{"name":"Reverse Mathematics","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reverse Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/princeton/9780691196411.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on arithmetical comprehension. Arithmetical comprehension is the most obvious set existence axiom to use when developing analysis in a system based on Peano arithmetic (PA) with set variables. This axiom asserts the existence of a set X of natural numbers for each property φ‎ definable in the language of PA. More precisely, if φ‎(n) is a property defined in the language of PA plus set variables, but with no set quantifiers, then there is a set X whose members are the natural numbers n such that φ‎(n). Since all such formulas φ‎ are asserted for, the arithmetical comprehension axiom is really an axiom schema. The reason set variables are allowed in φ‎ is to enable sets to be defined in terms of “given” sets. The reason set quantifiers are disallowed in φ‎ is to avoid definitions in which a set is defined in terms of all sets of natural numbers (and hence in terms of itself). The system consisting of PA plus arithmetical comprehension is called ACA0. This system lies at a remarkable “sweet spot” among axiom systems for analysis.
算术上的理解
这一章的重点是算术理解。在基于Peano算法(PA)的系统中开发具有集合变量的分析时,算术理解是最明显的集存在性公理。这个公理断言对于每个在PA语言中可定义的性质,一个自然数集合X的存在性。更准确地说,如果φ φ (n)是用PA加集合变量的语言定义的属性,但没有集合量词,则存在一个集合X,其成员是自然数n,使得φ φ (n)。因为所有这样的公式φ都被断言了,所以算术理解公理实际上是一个公理模式。在φ中允许使用集合变量的原因是允许用“给定”集合来定义集合。在φ φ中不允许使用集合量词的原因是为了避免用所有自然数集合定义集合(因此也用自身定义集合)的定义。由PA加算术理解组成的系统称为ACA0。这个系统在分析公理系统中处于一个显著的“甜蜜点”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信