Y. Kim, H. Herrmann, M. Kaufman, R. Howe, C. Young, R. Malone, J. A. Green, T. Haines
{"title":"Time-resolved measurements of Cygnus x-ray production using Aerogel Cherenkov Detector","authors":"Y. Kim, H. Herrmann, M. Kaufman, R. Howe, C. Young, R. Malone, J. A. Green, T. Haines","doi":"10.1109/PPC.2017.8291173","DOIUrl":null,"url":null,"abstract":"An Aerogel Cherenkov Detector for Cygnus (ACD/C) has been developed to provide time-dependent x-ray spectral information from Cygnus — an intense flash x-ray source operated at the Nevada National Security Site. Time-resolved Cygnus x-ray signals were measured at three energy thresholds: 1.3 MeV (by 197 mg/cc aerogel), 1.1 MeV (by 260 mg/cc aerogel), and 0.3 MeV (by quartz). ACD/C data qualitatively suggest that the high-energy x-ray peak exists on a shorter timescale than the Cygnus voltage or current pulse. A time-dependent, x-ray spectral information can improve the understanding of the physics of dense objects radiography.","PeriodicalId":247019,"journal":{"name":"2017 IEEE 21st International Conference on Pulsed Power (PPC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 21st International Conference on Pulsed Power (PPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPC.2017.8291173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An Aerogel Cherenkov Detector for Cygnus (ACD/C) has been developed to provide time-dependent x-ray spectral information from Cygnus — an intense flash x-ray source operated at the Nevada National Security Site. Time-resolved Cygnus x-ray signals were measured at three energy thresholds: 1.3 MeV (by 197 mg/cc aerogel), 1.1 MeV (by 260 mg/cc aerogel), and 0.3 MeV (by quartz). ACD/C data qualitatively suggest that the high-energy x-ray peak exists on a shorter timescale than the Cygnus voltage or current pulse. A time-dependent, x-ray spectral information can improve the understanding of the physics of dense objects radiography.