Incremental Parameter Estimation of Stochastic State-Based Models

R. Lipp, A. Schmeink, Guido Dartmann, L. Fazlic, T. Vollmer, S. Winter, A. Peine, Lukas Martin
{"title":"Incremental Parameter Estimation of Stochastic State-Based Models","authors":"R. Lipp, A. Schmeink, Guido Dartmann, L. Fazlic, T. Vollmer, S. Winter, A. Peine, Lukas Martin","doi":"10.1109/SAMI50585.2021.9378693","DOIUrl":null,"url":null,"abstract":"This paper presents an incremental learning approach for estimating the structural parameters in stochastic state-based models (SSMs). SSMs have proven to be useful for modelling biological and medical processes, as they can represent both time dependency and stochastic processes. A major challenge in modelling in bioinformatics is that learning processes usually rely on large publicly accessible databases. In this work, a new approach is presented, where models are trained incrementally locally at different data sources, e.g., hospitals, without having to pass on sensitive data. After learning, only the parameters of the model are passed on, in this case the arc weights of stochastic Petri nets. As a result, data protection and privacy of patients in hospitals are respected and it is no longer necessary to rely on the existence of a suitable accessible database. Simulations are used to evaluate the performance of the algorithm for a gene regulatory network.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an incremental learning approach for estimating the structural parameters in stochastic state-based models (SSMs). SSMs have proven to be useful for modelling biological and medical processes, as they can represent both time dependency and stochastic processes. A major challenge in modelling in bioinformatics is that learning processes usually rely on large publicly accessible databases. In this work, a new approach is presented, where models are trained incrementally locally at different data sources, e.g., hospitals, without having to pass on sensitive data. After learning, only the parameters of the model are passed on, in this case the arc weights of stochastic Petri nets. As a result, data protection and privacy of patients in hospitals are respected and it is no longer necessary to rely on the existence of a suitable accessible database. Simulations are used to evaluate the performance of the algorithm for a gene regulatory network.
基于随机状态模型的增量参数估计
本文提出了一种基于增量学习的随机状态模型(ssm)结构参数估计方法。ssm已被证明对生物和医学过程建模是有用的,因为它们既可以表示时间依赖性,也可以表示随机过程。生物信息学建模的一个主要挑战是学习过程通常依赖于可公开访问的大型数据库。在这项工作中,提出了一种新的方法,即在不同的数据源(例如医院)上对模型进行局部增量训练,而不必传递敏感数据。学习后,只传递模型的参数,即随机Petri网的圆弧权值。因此,医院中病人的数据保护和隐私得到了尊重,不再需要依赖现有的适当的可访问数据库。通过仿真对基因调控网络算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信