The Shape of Incomplete Preferences

R. Nau
{"title":"The Shape of Incomplete Preferences","authors":"R. Nau","doi":"10.1214/009053606000000740","DOIUrl":null,"url":null,"abstract":"Incomplete preferences provide the epistemic foundation for models of imprecise subjective probabilities and utilities that are used in robust Bayesian analysis and in theories of bounded rationality. This paper presents a simple axiomatization of incomplete preferences and characterizes the shape of their representing sets of probabilities and utilities. Deletion of the completeness assumption from the axiom system of Anscombe and Aumann yields preferences represented by a convex set of state-dependent expected utilities, of which at least one must be a probability/utility pair. A strengthening of the state-independence axiom is needed to obtain a representation purely in terms of a set of probability/utility pairs.","PeriodicalId":377089,"journal":{"name":"International Symposium on Imprecise Probabilities and Their Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Imprecise Probabilities and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/009053606000000740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

Incomplete preferences provide the epistemic foundation for models of imprecise subjective probabilities and utilities that are used in robust Bayesian analysis and in theories of bounded rationality. This paper presents a simple axiomatization of incomplete preferences and characterizes the shape of their representing sets of probabilities and utilities. Deletion of the completeness assumption from the axiom system of Anscombe and Aumann yields preferences represented by a convex set of state-dependent expected utilities, of which at least one must be a probability/utility pair. A strengthening of the state-independence axiom is needed to obtain a representation purely in terms of a set of probability/utility pairs.
不完全偏好的形状
不完全偏好为不精确的主观概率和效用模型提供了认知基础,这些模型被用于稳健的贝叶斯分析和有限理性理论。本文给出了不完全偏好的一个简单公理化,并描述了它们的概率和效用表示集的形状。从Anscombe和Aumann的公理系统中删除完备性假设,得到由状态依赖的期望效用凸集表示的偏好,其中至少有一个必须是概率/效用对。需要对状态独立公理进行强化,以获得纯粹基于一组概率/效用对的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信