Approximately Counting Answers to Conjunctive Queries with Disequalities and Negations

Jacob Focke, L. A. Goldberg, M. Roth, Stanislav Živný
{"title":"Approximately Counting Answers to Conjunctive Queries with Disequalities and Negations","authors":"Jacob Focke, L. A. Goldberg, M. Roth, Stanislav Živný","doi":"10.1145/3517804.3526231","DOIUrl":null,"url":null,"abstract":"We study the complexity of approximating the number of answers to a small query φ in a large database D. We establish an exhaustive classification into tractable and intractable cases if φ is a conjunctive query possibly including disequalities and negations: - If there is a constant bound on the arity of φ, and if the randomised Exponential Time Hypothesis (rETH) holds, then the problem has a fixed-parameter tractable approximation scheme (FPTRAS) if and only if the treewidth of φ is bounded. - If the arity is unbounded and φ does not have negations, then the problem has an FPTRAS if and only if the adaptive width of φ (a width measure strictly more general than treewidth) is bounded; the lower bound relies on the rETH as well. Additionally we show that our results cannot be strengthened to achieve a fully polynomial randomised approximation scheme (FPRAS): We observe that, unless NP=RP, there is no FPRAS even if the treewidth (and the adaptive width) is 1. However, if there are neither disequalities nor negations, we prove the existence of an FPRAS for queries of bounded fractional hypertreewidth, strictly generalising the recently established FPRAS for conjunctive queries with bounded hypertreewidth due to Arenas, Croquevielle, Jayaram and Riveros (STOC 2021).","PeriodicalId":230606,"journal":{"name":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3517804.3526231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We study the complexity of approximating the number of answers to a small query φ in a large database D. We establish an exhaustive classification into tractable and intractable cases if φ is a conjunctive query possibly including disequalities and negations: - If there is a constant bound on the arity of φ, and if the randomised Exponential Time Hypothesis (rETH) holds, then the problem has a fixed-parameter tractable approximation scheme (FPTRAS) if and only if the treewidth of φ is bounded. - If the arity is unbounded and φ does not have negations, then the problem has an FPTRAS if and only if the adaptive width of φ (a width measure strictly more general than treewidth) is bounded; the lower bound relies on the rETH as well. Additionally we show that our results cannot be strengthened to achieve a fully polynomial randomised approximation scheme (FPRAS): We observe that, unless NP=RP, there is no FPRAS even if the treewidth (and the adaptive width) is 1. However, if there are neither disequalities nor negations, we prove the existence of an FPRAS for queries of bounded fractional hypertreewidth, strictly generalising the recently established FPRAS for conjunctive queries with bounded hypertreewidth due to Arenas, Croquevielle, Jayaram and Riveros (STOC 2021).
带有不等式和否定的连接查询的近似计数答案
我们研究的复杂性近似回答一个小数量的大型数据库中查询φd我们建立一个详尽的分类成容易处理的和棘手的案件如果φ是连接查询可能包括disequalities和否定:——如果有一个常数φ的参数数量,如果随机指数时间假说(rETH)成立,那么问题有一个固定参数可近似方案(FPTRAS)当且仅当的treewidthφ是有界的。-如果arity是无界的,φ没有负数,那么问题有一个FPTRAS当且仅当φ的自适应宽度(一个宽度测量严格比treewidth更一般)是有界的;下限也依赖于rETH。此外,我们表明我们的结果不能被加强以实现完全多项式随机化近似方案(FPRAS):我们观察到,除非NP=RP,否则即使树宽(和自适应宽度)为1,也没有FPRAS。然而,如果既不存在不等式也不存在否定,我们证明了有界分数超树宽查询的FPRAS的存在性,严格推广了最近由于Arenas, Croquevielle, Jayaram和Riveros (STOC 2021)而建立的具有有界超树宽的联合查询的FPRAS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信