Applying Convolutional LSTM Network to Predict El Niño Events: Transfer Learning from The Data of Dynamical Model and Observation

Bin Mu, Shaoyang Ma, Shijin Yuan, Hui Xu
{"title":"Applying Convolutional LSTM Network to Predict El Niño Events: Transfer Learning from The Data of Dynamical Model and Observation","authors":"Bin Mu, Shaoyang Ma, Shijin Yuan, Hui Xu","doi":"10.1109/ICEIEC49280.2020.9152317","DOIUrl":null,"url":null,"abstract":"Neural network as a statistical method is widely used for weather forecasting. But for the prediction of El Niño grid data, the data record is short. In this paper, we use deep learning to handle spatiotemporal information and transfer learning to transfer knowledge from dynamical model (Zebiak–Cane model) data to the prediction of realistic El Niño. A ConvLSTM (Convolutional Long Short-Term Memory Network) architecture is constructed to predict the grid data of sea surface temperature and thermocline depth at lead times from 3 to 12 months. Cross-validation is used to evaluate the predictions. The entire data record from 1980 to 2018 is divided into 10 groups and used for training and validation. The experiment results show that transfer learning have a positive impact on the El Niño prediction, especially for the strong Eastern-Pacific type. Compared with the predictions of the Zebiak-Cane model, it can be inferred that the role of the model data in transfer learning is greater than the observation data.","PeriodicalId":352285,"journal":{"name":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 10th International Conference on Electronics Information and Emergency Communication (ICEIEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIEC49280.2020.9152317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neural network as a statistical method is widely used for weather forecasting. But for the prediction of El Niño grid data, the data record is short. In this paper, we use deep learning to handle spatiotemporal information and transfer learning to transfer knowledge from dynamical model (Zebiak–Cane model) data to the prediction of realistic El Niño. A ConvLSTM (Convolutional Long Short-Term Memory Network) architecture is constructed to predict the grid data of sea surface temperature and thermocline depth at lead times from 3 to 12 months. Cross-validation is used to evaluate the predictions. The entire data record from 1980 to 2018 is divided into 10 groups and used for training and validation. The experiment results show that transfer learning have a positive impact on the El Niño prediction, especially for the strong Eastern-Pacific type. Compared with the predictions of the Zebiak-Cane model, it can be inferred that the role of the model data in transfer learning is greater than the observation data.
应用卷积LSTM网络预测El Niño事件:基于动态模型和观测数据的迁移学习
神经网络作为一种统计方法被广泛应用于天气预报。但对于El Niño网格数据的预测,数据记录较短。在本文中,我们使用深度学习来处理时空信息,并使用迁移学习将知识从动态模型(Zebiak-Cane模型)数据转移到现实El Niño的预测中。构建了卷积长短期记忆网络(Convolutional Long - Short-Term Memory Network, ConvLSTM)结构,对3 ~ 12个月的海面温度和温跃层深度网格数据进行预测。交叉验证用于评估预测。将1980年至2018年的全部数据记录分为10组,用于培训和验证。实验结果表明,迁移学习对El Niño预测有积极的影响,特别是对于强东太平洋类型。对比Zebiak-Cane模型的预测,可以推断模型数据在迁移学习中的作用大于观测数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信