Opinion Spammer Detection in Web Forum

Yu-Ren Chen, Hsin-Hsi Chen
{"title":"Opinion Spammer Detection in Web Forum","authors":"Yu-Ren Chen, Hsin-Hsi Chen","doi":"10.1145/2766462.2767766","DOIUrl":null,"url":null,"abstract":"In this paper, a real case study on opinion spammer detection in web forum is presented. We explore user profiles, maximum spamicity of first posts of users, burstiness of registration of user accounts, and frequent poster set to build a model with SVM with RBF kernel and frequent itemset mining. The proposed model achieves 0.6753 precision, 0.6190 recall, and 0.6460 F1 score. The result is promising because the ratio of opinion spammers in the test set is only 0.98%.","PeriodicalId":297035,"journal":{"name":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2766462.2767766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper, a real case study on opinion spammer detection in web forum is presented. We explore user profiles, maximum spamicity of first posts of users, burstiness of registration of user accounts, and frequent poster set to build a model with SVM with RBF kernel and frequent itemset mining. The proposed model achieves 0.6753 precision, 0.6190 recall, and 0.6460 F1 score. The result is promising because the ratio of opinion spammers in the test set is only 0.98%.
意见垃圾邮件检测在Web论坛
本文以一个真实的案例研究了网络论坛中垃圾言论者的检测问题。利用RBF核支持向量机(SVM)和频繁项集挖掘技术,对用户的个人资料、用户发帖的最大垃圾性、用户注册的突发性和频繁贴文集进行了研究,建立了支持向量机模型。该模型的精度为0.6753,召回率为0.6190,F1分数为0.6460。结果是有希望的,因为在测试集中意见垃圾邮件制造者的比例只有0.98%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信