Chromatic splitting for the K(2)–local sphere at p = 2

A. Beaudry, P. Goerss, H. Henn
{"title":"Chromatic splitting for the K(2)–local sphere at\np = 2","authors":"A. Beaudry, P. Goerss, H. Henn","doi":"10.2140/gt.2022.26.377","DOIUrl":null,"url":null,"abstract":"We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find all the summands predicted by the Chromatic Splitting Conjecture, but we find some extra summands as well. An essential ingredient in our approach is the analysis of the continuous group cohomology $H^\\ast(\\mathbb{G}_2,E_0)$ where $\\mathbb{G}_2$ is the Morava stabilizer group and $E_0 = \\mathbb{W}[[u_1]]$ is the ring of functions on the height $2$ Lubin-Tate space. We show that the inclusion of the constants $\\mathbb{W} \\to E_0$ induces an isomorphism on group cohomology, a radical simplification.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We calculate the homotopy type of $L_1L_{K(2)}S^0$ and $L_{K(1)}L_{K(2)}S^0$ at the prime 2, where $L_{K(n)}$ is localization with respect to Morava $K$-theory and $L_1$ localization with respect to $2$-local $K$ theory. In $L_1L_{K(2)}S^0$ we find all the summands predicted by the Chromatic Splitting Conjecture, but we find some extra summands as well. An essential ingredient in our approach is the analysis of the continuous group cohomology $H^\ast(\mathbb{G}_2,E_0)$ where $\mathbb{G}_2$ is the Morava stabilizer group and $E_0 = \mathbb{W}[[u_1]]$ is the ring of functions on the height $2$ Lubin-Tate space. We show that the inclusion of the constants $\mathbb{W} \to E_0$ induces an isomorphism on group cohomology, a radical simplification.
K(2)局部球atp = 2的色分裂
我们计算了$L_1L_{K(2)}S^0$和$L_{K(1)}L_{K(2)}S^0$在素数2处的同伦类型,其中$L_{K(n)}$是关于Morava $K$-理论的局域化,$L_1$是关于$2$-局部$K$理论的局域化。在$L_1L_{K(2)}S^0$中,我们找到了所有由色分裂猜想预测的和,但我们也发现了一些额外的和。该方法的一个重要组成部分是对连续群上同调$H^\ast(\mathbb{G}_2,E_0)$的分析,其中$\mathbb{G}_2$是Morava稳定群,$E_0 = \mathbb{W}[[u_1]]$是高度$2$ Lubin-Tate空间上的函数环。我们证明了常数$\mathbb{W} \到E_0$的包含可以在群上同构,这是一个根式化简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信