Isoperimetric planar clusters with infinitely many regions

M. Novaga, E. Paolini, E. Stepanov, V. M. Tortorelli
{"title":"Isoperimetric planar clusters with infinitely many regions","authors":"M. Novaga, E. Paolini, E. Stepanov, V. M. Tortorelli","doi":"10.3934/nhm.2023053","DOIUrl":null,"url":null,"abstract":"In this paper we study infinite isoperimetric clusters. An infinite cluster $ {\\bf{E}} $ in $ \\mathbb R^d $ is a sequence of disjoint measurable sets $ E_k\\subset \\mathbb R^d $, called regions of the cluster, $ k = 1, 2, 3, \\dots $ A natural question is the existence of a cluster $ {\\bf{E}} $ with given volumes $ a_k\\ge 0 $ of the regions $ E_k $, having finite perimeter $ P({\\bf{E}}) $, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $ d = 2 $, for any choice of the areas $ a_k $ with $ \\sum \\sqrt a_k < \\infty $. We also show the existence of a bounded minimizer with the property $ P({\\bf{E}}) = \\mathcal H^1({\\tilde\\partial} {\\bf{E}}) $, where $ {\\tilde\\partial} {\\bf{E}} $ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.","PeriodicalId":405126,"journal":{"name":"Networks Heterog. Media","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Networks Heterog. Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/nhm.2023053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study infinite isoperimetric clusters. An infinite cluster $ {\bf{E}} $ in $ \mathbb R^d $ is a sequence of disjoint measurable sets $ E_k\subset \mathbb R^d $, called regions of the cluster, $ k = 1, 2, 3, \dots $ A natural question is the existence of a cluster $ {\bf{E}} $ with given volumes $ a_k\ge 0 $ of the regions $ E_k $, having finite perimeter $ P({\bf{E}}) $, which is minimal among all the clusters with regions having the same volumes. We prove that such a cluster exists in the planar case $ d = 2 $, for any choice of the areas $ a_k $ with $ \sum \sqrt a_k < \infty $. We also show the existence of a bounded minimizer with the property $ P({\bf{E}}) = \mathcal H^1({\tilde\partial} {\bf{E}}) $, where $ {\tilde\partial} {\bf{E}} $ denotes the measure theoretic boundary of the cluster. Finally, we provide several examples of infinite isoperimetric clusters for anisotropic and fractional perimeters.
具有无限多区域的等周平面团簇
本文研究无穷等周簇。无限簇$ {\bf{E}} $在$ \mathbb R^d $中是一系列不相交的可测量集$ E_k\subset \mathbb R^d $,称为簇的区域,$ k = 1, 2, 3, \dots $一个自然的问题是具有给定体积$ a_k\ge 0 $区域$ E_k $的簇$ {\bf{E}} $的存在性,它具有有限的周长$ P({\bf{E}}) $,在所有具有相同体积区域的簇中是最小的。我们证明了在平面情况$ d = 2 $下,对于任意选择面积$ a_k $和$ \sum \sqrt a_k < \infty $,都存在这样的聚类。我们还证明了具有$ P({\bf{E}}) = \mathcal H^1({\tilde\partial} {\bf{E}}) $性质的有界极小器的存在性,其中$ {\tilde\partial} {\bf{E}} $表示聚类的测度理论边界。最后,我们给出了几个具有各向异性和分数周长的无限等周簇的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信