Preventing equivalence attacks in updated, anonymized data

Yeye He, Siddharth Barman, J. Naughton
{"title":"Preventing equivalence attacks in updated, anonymized data","authors":"Yeye He, Siddharth Barman, J. Naughton","doi":"10.1109/ICDE.2011.5767924","DOIUrl":null,"url":null,"abstract":"In comparison to the extensive body of existing work considering publish-once, static anonymization, dynamic anonymization is less well studied. Previous work, most notably m-invariance, has made considerable progress in devising a scheme that attempts to prevent individual records from being associated with too few sensitive values. We show, however, that in the presence of updates, even an m-invariant table can be exploited by a new type of attack we call the “equivalence-attack.” To deal with the equivalence attack, we propose a graph-based anonymization algorithm that leverages solutions to the classic “min-cut/max-flow” problem, and demonstrate with experiments that our algorithm is efficient and effective in preventing equivalence attacks.","PeriodicalId":332374,"journal":{"name":"2011 IEEE 27th International Conference on Data Engineering","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 27th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2011.5767924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

In comparison to the extensive body of existing work considering publish-once, static anonymization, dynamic anonymization is less well studied. Previous work, most notably m-invariance, has made considerable progress in devising a scheme that attempts to prevent individual records from being associated with too few sensitive values. We show, however, that in the presence of updates, even an m-invariant table can be exploited by a new type of attack we call the “equivalence-attack.” To deal with the equivalence attack, we propose a graph-based anonymization algorithm that leverages solutions to the classic “min-cut/max-flow” problem, and demonstrate with experiments that our algorithm is efficient and effective in preventing equivalence attacks.
防止更新的匿名数据中的对等攻击
与考虑一次性发布、静态匿名化的大量现有工作相比,动态匿名化的研究较少。以前的工作,最著名的是m-不变性,在设计一种方案方面取得了相当大的进展,该方案试图防止单个记录与太少的敏感值相关联。然而,我们表明,在存在更新的情况下,即使是m不变表也可以被一种新的攻击所利用,我们称之为“等效攻击”。为了应对等效攻击,我们提出了一种基于图的匿名化算法,该算法利用经典的“最小切断/最大流量”问题的解决方案,并通过实验证明了我们的算法在防止等效攻击方面是高效和有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信