Quantum-Behaved Particle Swarm Optimization with Cooperative Coevolution for Large Scale Optimization

Na Tian
{"title":"Quantum-Behaved Particle Swarm Optimization with Cooperative Coevolution for Large Scale Optimization","authors":"Na Tian","doi":"10.1109/DCABES.2015.28","DOIUrl":null,"url":null,"abstract":"Quantum-behaved particle swarm optimization (QPSO) has successfully been applied to unimodal and multimodal optimization problems. However, with the emerging and popular of big data and deep machine learning, QPSO encounters limitations with high dimensions. In this paper, QPSO with cooperative co evolution (QPSO_CC) is used to decompose the high dimensional problems into several lower dimensional problems and optimize them separately. The numerical experimental results show that QPSO_CC has comparative or even better performance than other algorithms.","PeriodicalId":444588,"journal":{"name":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES.2015.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Quantum-behaved particle swarm optimization (QPSO) has successfully been applied to unimodal and multimodal optimization problems. However, with the emerging and popular of big data and deep machine learning, QPSO encounters limitations with high dimensions. In this paper, QPSO with cooperative co evolution (QPSO_CC) is used to decompose the high dimensional problems into several lower dimensional problems and optimize them separately. The numerical experimental results show that QPSO_CC has comparative or even better performance than other algorithms.
大规模优化的协同进化量子粒子群优化
量子行为粒子群优化(QPSO)已成功地应用于单峰和多峰优化问题。然而,随着大数据和深度机器学习的兴起和普及,QPSO遇到了高维的限制。本文采用协同进化QPSO_CC (QPSO_CC)将高维问题分解为多个低维问题,并分别进行优化。数值实验结果表明,QPSO_CC算法具有与其他算法相当甚至更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信