NAX

Shubham Negi, I. Chakraborty, Aayush Ankit, K. Roy
{"title":"NAX","authors":"Shubham Negi, I. Chakraborty, Aayush Ankit, K. Roy","doi":"10.1145/3489517.3530476","DOIUrl":null,"url":null,"abstract":"Neural Architecture Search (NAS) has provided the ability to design efficient deep neural network (DNN) catered towards different hardwares like GPUs, CPUs etc. However, integrating NAS with Memristive Crossbar Array (MCA) based In-Memory Computing (IMC) accelerator remains an open problem. The hardware efficiency (energy, latency and area) as well as application accuracy (considering device and circuit non-idealities) of DNNs mapped to such hardware are co-dependent on network parameters such as kernel size, depth etc. and hardware architecture parameters such as crossbar size and the precision of analog-to-digital converters. Co-optimization of both network and hardware parameters presents a challenging search space comprising of different kernel sizes mapped to varying crossbar sizes. To that effect, we propose NAX - an efficient neural architecture search engine that co-designs neural network and IMC based hardware architecture. NAX explores the aforementioned search space to determine kernel and corresponding crossbar sizes for each DNN layer to achieve optimal tradeoffs between hardware efficiency and application accuracy. For CIFAR-10 and Tiny ImageNet, our models achieve 0.9% and 18.57% higher accuracy at 30% and -10.47% lower EDAP (energy-delay-area product), compared to baseline ResNet-20 and ResNet-18 models, respectively.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Neural Architecture Search (NAS) has provided the ability to design efficient deep neural network (DNN) catered towards different hardwares like GPUs, CPUs etc. However, integrating NAS with Memristive Crossbar Array (MCA) based In-Memory Computing (IMC) accelerator remains an open problem. The hardware efficiency (energy, latency and area) as well as application accuracy (considering device and circuit non-idealities) of DNNs mapped to such hardware are co-dependent on network parameters such as kernel size, depth etc. and hardware architecture parameters such as crossbar size and the precision of analog-to-digital converters. Co-optimization of both network and hardware parameters presents a challenging search space comprising of different kernel sizes mapped to varying crossbar sizes. To that effect, we propose NAX - an efficient neural architecture search engine that co-designs neural network and IMC based hardware architecture. NAX explores the aforementioned search space to determine kernel and corresponding crossbar sizes for each DNN layer to achieve optimal tradeoffs between hardware efficiency and application accuracy. For CIFAR-10 and Tiny ImageNet, our models achieve 0.9% and 18.57% higher accuracy at 30% and -10.47% lower EDAP (energy-delay-area product), compared to baseline ResNet-20 and ResNet-18 models, respectively.
NAX
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信