Cryptoasset Factor Models

Zurab Kakushadze
{"title":"Cryptoasset Factor Models","authors":"Zurab Kakushadze","doi":"10.2139/ssrn.3245641","DOIUrl":null,"url":null,"abstract":"We propose factor models for the cross-section of daily cryptoasset returns and provide source code for data downloads, computing risk factors and backtesting them out-of-sample. In \"cryptoassets\" we include all cryptocurrencies and a host of various other digital assets (coins and tokens) for which exchange market data is available. Based on our empirical analysis, we identify the leading factor that appears to strongly contribute into daily cryptoasset returns. Our results suggest that cross-sectional statistical arbitrage trading may be possible for cryptoassets subject to efficient executions and shorting.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3245641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose factor models for the cross-section of daily cryptoasset returns and provide source code for data downloads, computing risk factors and backtesting them out-of-sample. In "cryptoassets" we include all cryptocurrencies and a host of various other digital assets (coins and tokens) for which exchange market data is available. Based on our empirical analysis, we identify the leading factor that appears to strongly contribute into daily cryptoasset returns. Our results suggest that cross-sectional statistical arbitrage trading may be possible for cryptoassets subject to efficient executions and shorting.
加密资产因子模型
我们提出了每日加密资产回报横截面的因素模型,并提供了数据下载、计算风险因素和样本外回测的源代码。在“加密资产”中,我们包括所有加密货币和交换市场数据可用的各种其他数字资产(硬币和代币)。根据我们的实证分析,我们确定了似乎对每日加密资产回报有重大贡献的主要因素。我们的研究结果表明,对于有效执行和做空的加密资产来说,横截面统计套利交易是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信