Laplace ℓ1 robust Kalman filter based on majorization minimization

Hongwei Wang, Hongbin Li, Wei Zhang, Heping Wang
{"title":"Laplace ℓ1 robust Kalman filter based on majorization minimization","authors":"Hongwei Wang, Hongbin Li, Wei Zhang, Heping Wang","doi":"10.23919/ICIF.2017.8009803","DOIUrl":null,"url":null,"abstract":"In this paper, we attack the estimation problem in Kalman filtering when the measurements are contaminated by outliers. We employ the Laplace distribution to model the underlying non-Gaussian measurement process. The maximum posterior estimation is solved by the majorization minimization (MM) approach. This yields an MM based robust filter, where the intractable ℓ1 norm problem is converted into an ℓ2 norm format. Furthermore, we implement the MM based robust filter in the Kalman filtering framework and develop a Laplace ℓ1 robust Kalman filter. The proposed algorithm is tested by numerical simulations. The robustness of our algorithm has been borne out when compared with other robust filters, especially in scenarios of heavy outliers.","PeriodicalId":148407,"journal":{"name":"2017 20th International Conference on Information Fusion (Fusion)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 20th International Conference on Information Fusion (Fusion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICIF.2017.8009803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper, we attack the estimation problem in Kalman filtering when the measurements are contaminated by outliers. We employ the Laplace distribution to model the underlying non-Gaussian measurement process. The maximum posterior estimation is solved by the majorization minimization (MM) approach. This yields an MM based robust filter, where the intractable ℓ1 norm problem is converted into an ℓ2 norm format. Furthermore, we implement the MM based robust filter in the Kalman filtering framework and develop a Laplace ℓ1 robust Kalman filter. The proposed algorithm is tested by numerical simulations. The robustness of our algorithm has been borne out when compared with other robust filters, especially in scenarios of heavy outliers.
基于最大最小化的拉普拉斯鲁棒卡尔曼滤波
本文研究了卡尔曼滤波中测量值被异常值污染时的估计问题。我们采用拉普拉斯分布来模拟潜在的非高斯测量过程。最大后验估计采用最大极小化(MM)方法求解。这产生了一个基于MM的鲁棒滤波器,其中棘手的1模问题被转换为2模格式。此外,我们在卡尔曼滤波框架中实现了基于MM的鲁棒滤波器,并开发了一个拉普拉斯1鲁棒卡尔曼滤波器。通过数值仿真验证了该算法的有效性。与其他鲁棒滤波器相比,我们的算法的鲁棒性得到了证实,特别是在有大量异常值的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信