PathRec: Visual Analysis of Travel Route Recommendations

Dawei Chen, Dongwoo Kim, Lexing Xie, Minjeong Shin, A. Menon, Cheng Soon Ong, Iman Avazpour, J. Grundy
{"title":"PathRec: Visual Analysis of Travel Route Recommendations","authors":"Dawei Chen, Dongwoo Kim, Lexing Xie, Minjeong Shin, A. Menon, Cheng Soon Ong, Iman Avazpour, J. Grundy","doi":"10.1145/3109859.3109983","DOIUrl":null,"url":null,"abstract":"We present an interactive visualisation tool for recommending travel trajectories. This system is based on new machine learning formulations and algorithms for the sequence recommendation problem. The system starts from a map-based overview, taking an interactive query as starting point. It then breaks down contributions from different geographical and user behavior features, and those from individual points-of-interest versus pairs of consecutive points on a route. The system also supports detailed quantitative interrogation by comparing a large number of features for multiple points. Effective trajectory visualisations can potentially benefit a large cohort of online map users and assist their decision-making. More broadly, the design of this system can inform visualisations of other structured prediction tasks, such as for sequences or trees.","PeriodicalId":417173,"journal":{"name":"Proceedings of the Eleventh ACM Conference on Recommender Systems","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109859.3109983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We present an interactive visualisation tool for recommending travel trajectories. This system is based on new machine learning formulations and algorithms for the sequence recommendation problem. The system starts from a map-based overview, taking an interactive query as starting point. It then breaks down contributions from different geographical and user behavior features, and those from individual points-of-interest versus pairs of consecutive points on a route. The system also supports detailed quantitative interrogation by comparing a large number of features for multiple points. Effective trajectory visualisations can potentially benefit a large cohort of online map users and assist their decision-making. More broadly, the design of this system can inform visualisations of other structured prediction tasks, such as for sequences or trees.
PathRec:旅游路线推荐的可视化分析
我们提出了一个交互式可视化工具,用于推荐旅行轨迹。该系统基于新的机器学习公式和算法来解决序列推荐问题。系统从基于地图的概览开始,以交互式查询作为起点。然后,它分解了来自不同地理和用户行为特征的贡献,以及来自单个兴趣点与路线上成对连续点的贡献。系统还支持对多个点进行大量特征对比的详细定量讯问。有效的轨迹可视化可以潜在地使一大群在线地图用户受益,并帮助他们做出决策。更广泛地说,该系统的设计可以为其他结构化预测任务的可视化提供信息,例如序列或树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信