Exploiting gaze movements for automatic video annotation

S. Vrochidis, I. Patras, Y. Kompatsiaris
{"title":"Exploiting gaze movements for automatic video annotation","authors":"S. Vrochidis, I. Patras, Y. Kompatsiaris","doi":"10.1109/WIAMIS.2012.6226766","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for automatic video annotation by exploiting gaze movements during interactive video retrieval. In this context, we use a content-based video search engine to perform video retrieval, during which, we capture the user eye movements with an eye-tracker. We exploit these data by generating feature vectors, which are used to train a classifier that could identify shots of interest for new users. The queries submitted by new users are clustered in search topics and the viewed shots are annotated as relevant or non-relevant to the topics by the classifier. The evaluation shows that the use of aggregated gaze data can be utilized effectively for video annotation purposes.","PeriodicalId":346777,"journal":{"name":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 13th International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2012.6226766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposes a framework for automatic video annotation by exploiting gaze movements during interactive video retrieval. In this context, we use a content-based video search engine to perform video retrieval, during which, we capture the user eye movements with an eye-tracker. We exploit these data by generating feature vectors, which are used to train a classifier that could identify shots of interest for new users. The queries submitted by new users are clustered in search topics and the viewed shots are annotated as relevant or non-relevant to the topics by the classifier. The evaluation shows that the use of aggregated gaze data can be utilized effectively for video annotation purposes.
利用凝视运动进行自动视频注释
本文提出了一种利用交互式视频检索过程中的注视运动来实现视频自动标注的框架。在这种情况下,我们使用基于内容的视频搜索引擎进行视频检索,在此过程中,我们使用眼动仪捕捉用户的眼球运动。我们通过生成特征向量来利用这些数据,这些特征向量用于训练一个分类器,该分类器可以识别新用户感兴趣的照片。新用户提交的查询被聚类到搜索主题中,被查看的照片被分类器标注为与主题相关或不相关。评价结果表明,聚合注视数据可以有效地用于视频注释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信