{"title":"Handwritten digits recognition using a high level network-based approach","authors":"T. C. Silva, Liang Zhao","doi":"10.1109/IST.2013.6729700","DOIUrl":null,"url":null,"abstract":"Complex networks refer to large-scale graphs with nontrivial connection patterns. The salient and interesting features that the complex network study offers in comparison to graph theory are the emphasis on the dynamical properties of the networks and the ability of inherently uncovering pattern formation of the vertices. In this paper, we present a hybrid data classification technique combining a low level and a high level classifier. The low level term can be equipped with any traditional classification techniques, which realize the classification task considering only physical or topological features (e.g., geometrical or statistical features) of the input data. On the other hand, the high level term has the ability of detecting data patterns with semantic meanings. In this way, the classification is realized by means of the extraction of the underlying network's features constructed from the input data. As a result, the high level classification process measures the compliance of the test instances with the pattern formation of the training data. Out of various high level perspectives that can be utilized to capture semantic meaning, we utilize the dynamical features that are generated from a tourist walker in a networked environment. Specifically, a weighted combination of transient and cycle lengths generated by the tourist walk is employed for that end. A study on the critical memory length is provided. Finally, we apply the proposed technique to the recognition of handwritten digit images and promising results have been obtained.","PeriodicalId":448698,"journal":{"name":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST.2013.6729700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Complex networks refer to large-scale graphs with nontrivial connection patterns. The salient and interesting features that the complex network study offers in comparison to graph theory are the emphasis on the dynamical properties of the networks and the ability of inherently uncovering pattern formation of the vertices. In this paper, we present a hybrid data classification technique combining a low level and a high level classifier. The low level term can be equipped with any traditional classification techniques, which realize the classification task considering only physical or topological features (e.g., geometrical or statistical features) of the input data. On the other hand, the high level term has the ability of detecting data patterns with semantic meanings. In this way, the classification is realized by means of the extraction of the underlying network's features constructed from the input data. As a result, the high level classification process measures the compliance of the test instances with the pattern formation of the training data. Out of various high level perspectives that can be utilized to capture semantic meaning, we utilize the dynamical features that are generated from a tourist walker in a networked environment. Specifically, a weighted combination of transient and cycle lengths generated by the tourist walk is employed for that end. A study on the critical memory length is provided. Finally, we apply the proposed technique to the recognition of handwritten digit images and promising results have been obtained.