{"title":"Insights of Instructors and Advisors into an Early Prediction Model for Non-Thriving Students","authors":"A. Hershkovitz, A. Ambrose","doi":"10.18608/jla.2022.7509","DOIUrl":null,"url":null,"abstract":"In this qualitative study (N=6), we explored insights of first-year students’ instructors and advisors into an early identification system aimed at detecting non-thriving students in the context of an all-campus first-year orientation course for undergraduates. Following the development of that prediction model in a bottom-up manner, using a plethora of available data, we focus on how its end-users could help us understand the underlying mechanisms that drive the identification of non-thriving students. As findings suggest, participants were appreciative overall of the prediction and its timing and came up with various behaviours that could explain non-thriving, mostly motivation and engagement. They suggested additional data that could predict non-thriving, including background information, academic engagement, and learning habits.","PeriodicalId":145357,"journal":{"name":"J. Learn. Anal.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Learn. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18608/jla.2022.7509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this qualitative study (N=6), we explored insights of first-year students’ instructors and advisors into an early identification system aimed at detecting non-thriving students in the context of an all-campus first-year orientation course for undergraduates. Following the development of that prediction model in a bottom-up manner, using a plethora of available data, we focus on how its end-users could help us understand the underlying mechanisms that drive the identification of non-thriving students. As findings suggest, participants were appreciative overall of the prediction and its timing and came up with various behaviours that could explain non-thriving, mostly motivation and engagement. They suggested additional data that could predict non-thriving, including background information, academic engagement, and learning habits.