Stenosis Detection in X-ray Coronary Angiography with Deep Neural Networks Leveraged by Attention Mechanisms

Pedro Van Stralen, Dinis L. Rodrigues, Arlindo L. Oliveira, M. Menezes, F. Pinto
{"title":"Stenosis Detection in X-ray Coronary Angiography with Deep Neural Networks Leveraged by Attention Mechanisms","authors":"Pedro Van Stralen, Dinis L. Rodrigues, Arlindo L. Oliveira, M. Menezes, F. Pinto","doi":"10.1145/3569192.3569212","DOIUrl":null,"url":null,"abstract":"Coronary artery disease (CAD) is one of the most prevalent causes of death worldwide. The automatic detection of coronary artery stenosis on X-ray images is important in coronary heart disease diagnosis. Coronary artery disease is caused by atherosclerotic plaques with subsequent stenosis (e.g. narrowing) of the coronary arteries. This makes the heart work harder, risking failure. Automated identification of stenosis may be used for triage or as a second reader in clinical practice, providing a valuable tool for cardiologists. In this paper, we evaluate the detection of stenosis in X-ray coronary angiography images with novel object detection methods based on deep neural networks. We trained and tested three promising object detectors based on different neural network architectures leveraging attention mechanisms (EfficientDet, RetinaNet ResNet-50- FPN, and Faster R-CNN ResNet-101) using clinical angiography data of 438 patients. The metrics obtained on this dataset, have shown an advantage of EfficientDet over alternative approaches, achieving a mean average precision of 0.67 in the task of detecting stenosis in X-Ray angiographies. This result provides evidence that attention mechanisms improve the performance of convolutional neural networks in a medical imaging context.","PeriodicalId":249004,"journal":{"name":"Proceedings of the 9th International Conference on Bioinformatics Research and Applications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569192.3569212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Coronary artery disease (CAD) is one of the most prevalent causes of death worldwide. The automatic detection of coronary artery stenosis on X-ray images is important in coronary heart disease diagnosis. Coronary artery disease is caused by atherosclerotic plaques with subsequent stenosis (e.g. narrowing) of the coronary arteries. This makes the heart work harder, risking failure. Automated identification of stenosis may be used for triage or as a second reader in clinical practice, providing a valuable tool for cardiologists. In this paper, we evaluate the detection of stenosis in X-ray coronary angiography images with novel object detection methods based on deep neural networks. We trained and tested three promising object detectors based on different neural network architectures leveraging attention mechanisms (EfficientDet, RetinaNet ResNet-50- FPN, and Faster R-CNN ResNet-101) using clinical angiography data of 438 patients. The metrics obtained on this dataset, have shown an advantage of EfficientDet over alternative approaches, achieving a mean average precision of 0.67 in the task of detecting stenosis in X-Ray angiographies. This result provides evidence that attention mechanisms improve the performance of convolutional neural networks in a medical imaging context.
基于注意机制的深度神经网络在x线冠状动脉造影狭窄检测中的应用
冠状动脉疾病(CAD)是世界上最常见的死亡原因之一。冠状动脉狭窄x线图像自动检测在冠心病诊断中具有重要意义。冠状动脉疾病是由动脉粥样硬化斑块引起的,随后冠状动脉狭窄(如狭窄)。这使得心脏工作更加困难,有失败的风险。狭窄的自动识别可用于分诊或在临床实践中作为第二阅读器,为心脏病专家提供了一个有价值的工具。在本文中,我们评估了基于深度神经网络的新型目标检测方法在x线冠状动脉造影图像中狭窄的检测。利用438例患者的临床血管造影数据,我们训练并测试了三种基于不同神经网络架构的目标检测器(EfficientDet, RetinaNet ResNet-50- FPN和Faster R-CNN ResNet-101)。在该数据集上获得的指标显示了EfficientDet优于其他方法的优势,在x射线血管造影中检测狭窄的平均精度为0.67。这一结果提供了证据,证明注意机制提高了卷积神经网络在医学成像环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信