Haze weather recognition based on multiple features and Random Forest

Xue Fan, Zhiquan Feng, Xiaohui Yang, Tao Xu, Jinglan Tian, Na Lv
{"title":"Haze weather recognition based on multiple features and Random Forest","authors":"Xue Fan, Zhiquan Feng, Xiaohui Yang, Tao Xu, Jinglan Tian, Na Lv","doi":"10.1109/SPAC46244.2018.8965544","DOIUrl":null,"url":null,"abstract":"A single image based haze weather recognition is the fundamental operation of the applications of outdoor computer vision. Currently, the recognition results are remains undesirable and most existing methods are only for the fixed scene. In this paper, we propose multiple features and Random Forest based haze weather classification method for any scenario to improve the detection accuracy. First, through systematically investigation, multiple features are extracted and properly processed. Then, these features are combined into high dimension vectors and the Random Forest is adopted to lean an adaptive classifier for haze recognition. In the experiment, an outdoor image set which contains around 4000 images is collected. Form the experimental results is can be seen that the proposed method achieves 97.4% recognition accuracy of the haze weather on the collected dataset.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A single image based haze weather recognition is the fundamental operation of the applications of outdoor computer vision. Currently, the recognition results are remains undesirable and most existing methods are only for the fixed scene. In this paper, we propose multiple features and Random Forest based haze weather classification method for any scenario to improve the detection accuracy. First, through systematically investigation, multiple features are extracted and properly processed. Then, these features are combined into high dimension vectors and the Random Forest is adopted to lean an adaptive classifier for haze recognition. In the experiment, an outdoor image set which contains around 4000 images is collected. Form the experimental results is can be seen that the proposed method achieves 97.4% recognition accuracy of the haze weather on the collected dataset.
基于多特征和随机森林的雾霾天气识别
基于单幅图像的雾霾天气识别是户外计算机视觉应用的基础操作。目前,大多数识别方法仅针对固定场景,识别效果不理想。本文针对任意场景,提出了基于多特征和随机森林的雾霾天气分类方法,以提高检测精度。首先,通过系统调查,提取多个特征并进行适当处理。然后,将这些特征组合成高维向量,利用随机森林学习自适应分类器进行雾霾识别。在实验中,我们收集了一个大约4000张的户外图像集。从实验结果可以看出,本文方法在采集的数据集上对雾霾天气的识别准确率达到97.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信