Vulnerable Road Users Detection and Tracking using YOLOv4 and Deep SORT

Ahmed H. Abdel-Gawad, Alaa Khamis, L. Said, A. Radwan
{"title":"Vulnerable Road Users Detection and Tracking using YOLOv4 and Deep SORT","authors":"Ahmed H. Abdel-Gawad, Alaa Khamis, L. Said, A. Radwan","doi":"10.1109/JAC-ECC54461.2021.9691441","DOIUrl":null,"url":null,"abstract":"Over the years, The detection and tracking of Vulnerable Road Users (VRUs) have become one of the most critical features of self-driving car components. Because of its processing efficiency and better detection algorithms, tracking-by-detection appears to be the best paradigm. In this paper, a detection-based tracking approach is presented for Multiple VRU Tracking of video from an inside-vehicle camera in real-time. YOLOv4 scans every frame to detect VRUs first, then Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT) algorithm, which is customized for multiple VRU tracking, is applied. The results of our experiments on both the Joint Attention in Autonomous Driving (JAAD) and Multiple Object Tracking (MOT) datasets exhibit competitive performance.","PeriodicalId":354908,"journal":{"name":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JAC-ECC54461.2021.9691441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the years, The detection and tracking of Vulnerable Road Users (VRUs) have become one of the most critical features of self-driving car components. Because of its processing efficiency and better detection algorithms, tracking-by-detection appears to be the best paradigm. In this paper, a detection-based tracking approach is presented for Multiple VRU Tracking of video from an inside-vehicle camera in real-time. YOLOv4 scans every frame to detect VRUs first, then Simple Online and Realtime Tracking with a Deep Association Metric (Deep SORT) algorithm, which is customized for multiple VRU tracking, is applied. The results of our experiments on both the Joint Attention in Autonomous Driving (JAAD) and Multiple Object Tracking (MOT) datasets exhibit competitive performance.
基于YOLOv4和深度排序的弱势道路使用者检测与跟踪
多年来,对弱势道路使用者(vru)的检测和跟踪已经成为自动驾驶汽车部件最关键的功能之一。由于其处理效率和更好的检测算法,逐检测跟踪似乎是最好的范例。本文提出了一种基于检测的多VRU实时跟踪方法。YOLOv4首先扫描每一帧来检测VRU,然后应用针对多VRU跟踪定制的深度关联度量(Deep SORT)算法进行简单在线和实时跟踪。我们在自动驾驶(JAAD)和多目标跟踪(MOT)数据集上的实验结果都显示出具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信