FingerPass

Hao Kong, Li Lu, Jiadi Yu, Yingying Chen, L. Kong, Minglu Li
{"title":"FingerPass","authors":"Hao Kong, Li Lu, Jiadi Yu, Yingying Chen, L. Kong, Minglu Li","doi":"10.1145/3323679.3326518","DOIUrl":null,"url":null,"abstract":"The development of smart homes has advanced the concept of user authentication to not only protecting user privacy but also facilitating personalized services to users. Along this direction, we propose to integrate user authentication with human-computer interactions between users and smart household appliances through widely-deployed WiFi infrastructures, which is non-intrusive and device-free. In this paper, we propose FingerPass which leverages channel state information (CSI) of surrounding WiFi signals to continuously authenticate users through finger gestures in smart homes. We investigate CSI of WiFi signals in depth and find CSI phase can be used to capture and distinguish the unique behavioral characteristics from different users. FingerPass separates the user authentication process into two stages, login and interaction, to achieve high authentication accuracy and low response latency simultaneously. In the login stage, we develop a deep learning-based approach to extract behavioral characteristics of finger gestures for highly accurate user identification. For the interaction stage, to provide continuous authentication in real time for satisfactory user experience, we design a verification mechanism with lightweight classifiers to continuously authenticate the user's identity during each interaction of finger gestures. Experiments in real environments show that FingerPass can achieve 91.4% authentication accuracy, and 186.6ms response time during interactions.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The development of smart homes has advanced the concept of user authentication to not only protecting user privacy but also facilitating personalized services to users. Along this direction, we propose to integrate user authentication with human-computer interactions between users and smart household appliances through widely-deployed WiFi infrastructures, which is non-intrusive and device-free. In this paper, we propose FingerPass which leverages channel state information (CSI) of surrounding WiFi signals to continuously authenticate users through finger gestures in smart homes. We investigate CSI of WiFi signals in depth and find CSI phase can be used to capture and distinguish the unique behavioral characteristics from different users. FingerPass separates the user authentication process into two stages, login and interaction, to achieve high authentication accuracy and low response latency simultaneously. In the login stage, we develop a deep learning-based approach to extract behavioral characteristics of finger gestures for highly accurate user identification. For the interaction stage, to provide continuous authentication in real time for satisfactory user experience, we design a verification mechanism with lightweight classifiers to continuously authenticate the user's identity during each interaction of finger gestures. Experiments in real environments show that FingerPass can achieve 91.4% authentication accuracy, and 186.6ms response time during interactions.
FingerPass
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信