A Lattice-Based Phonotactic Language Recognition System with CMLLR Adaptation and Its Implementation Issues

C. Leung, R. Tong, B. Ma, Haizhou Li
{"title":"A Lattice-Based Phonotactic Language Recognition System with CMLLR Adaptation and Its Implementation Issues","authors":"C. Leung, R. Tong, B. Ma, Haizhou Li","doi":"10.1109/IALP.2009.67","DOIUrl":null,"url":null,"abstract":"This paper presents a “non-complicated” automatic spoken language recognition system which can be effectively implemented using publicly available toolkits (such as HTK, SRILM and SVM-Light) and corpus resources (such as Switchboard, CallFriend, OHSU and NIST LRE07 speech corpora). This system involves two context-independent phone recognizers, a vector space modelling classifier and an equal weight fusion of likelihood scores from the classifier. CMLLR adaptation and phone lattice are also used in this system. Our experiments show that these two techniques are essential in obvious performance improvement. Despite the simplicity of the system, it achieves the EER of 2.72% in the 30-sec condition in NIST LRE-2007 evaluation data set. Moreover, we describe our experience how we use the large amount of available training data to effectively test different configurations in the phone recognizers. This practical issue should be interesting to the later comers who plan to participate in NIST Language Recognition evaluation or similar international benchmark campaigns.","PeriodicalId":156840,"journal":{"name":"2009 International Conference on Asian Language Processing","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2009.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a “non-complicated” automatic spoken language recognition system which can be effectively implemented using publicly available toolkits (such as HTK, SRILM and SVM-Light) and corpus resources (such as Switchboard, CallFriend, OHSU and NIST LRE07 speech corpora). This system involves two context-independent phone recognizers, a vector space modelling classifier and an equal weight fusion of likelihood scores from the classifier. CMLLR adaptation and phone lattice are also used in this system. Our experiments show that these two techniques are essential in obvious performance improvement. Despite the simplicity of the system, it achieves the EER of 2.72% in the 30-sec condition in NIST LRE-2007 evaluation data set. Moreover, we describe our experience how we use the large amount of available training data to effectively test different configurations in the phone recognizers. This practical issue should be interesting to the later comers who plan to participate in NIST Language Recognition evaluation or similar international benchmark campaigns.
基于网格的cmlr自适应语音识别系统及其实现问题
本文提出了一个“非复杂”的自动语音识别系统,该系统可以使用公开可用的工具包(如HTK, SRILM和SVM-Light)和语料库资源(如Switchboard, CallFriend, OHSU和NIST LRE07语音语料库)有效地实现。该系统包括两个上下文无关的手机识别器,一个向量空间建模分类器和来自分类器的似然评分的等权融合。该系统还采用了cmlr自适应和手机格。我们的实验表明,这两种技术在明显的性能改进中是必不可少的。尽管系统简单,但在NIST LRE-2007评价数据集中,该系统在30秒条件下的EER达到了2.72%。此外,我们描述了我们如何使用大量可用的训练数据来有效地测试手机识别器中的不同配置的经验。对于计划参加NIST语言识别评估或类似的国际基准测试活动的后来者来说,这个实际问题应该是有趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信