Eye-Tracking to Predict User Cognitive Abilities and Performance for User-Adaptive Narrative Visualizations

Oswald Barral, Sébastien Lallé, Grigorii Guz, A. Iranpour, C. Conati
{"title":"Eye-Tracking to Predict User Cognitive Abilities and Performance for User-Adaptive Narrative Visualizations","authors":"Oswald Barral, Sébastien Lallé, Grigorii Guz, A. Iranpour, C. Conati","doi":"10.1145/3382507.3418884","DOIUrl":null,"url":null,"abstract":"We leverage eye-tracking data to predict user performance and levels of cognitive abilities while reading magazine-style narrative visualizations (MSNV), a widespread form of multimodal documents that combine text and visualizations. Such predictions are motivated by recent interest in devising user-adaptive MSNVs that can dynamically adapt to a user's needs. Our results provide evidence for the feasibility of real-time user modeling in MSNV, as we are the first to consider eye tracking data for predicting task comprehension and cognitive abilities while processing multimodal documents. We follow with a discussion on the implications to the design of personalized MSNVs.","PeriodicalId":402394,"journal":{"name":"Proceedings of the 2020 International Conference on Multimodal Interaction","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Multimodal Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382507.3418884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We leverage eye-tracking data to predict user performance and levels of cognitive abilities while reading magazine-style narrative visualizations (MSNV), a widespread form of multimodal documents that combine text and visualizations. Such predictions are motivated by recent interest in devising user-adaptive MSNVs that can dynamically adapt to a user's needs. Our results provide evidence for the feasibility of real-time user modeling in MSNV, as we are the first to consider eye tracking data for predicting task comprehension and cognitive abilities while processing multimodal documents. We follow with a discussion on the implications to the design of personalized MSNVs.
眼动追踪预测用户认知能力和用户自适应叙事可视化的表现
我们利用眼动追踪数据来预测用户在阅读杂志式叙事可视化(MSNV)时的表现和认知能力水平,MSNV是一种结合文本和可视化的多模态文档的广泛形式。这种预测的动机是最近对设计能够动态适应用户需求的用户自适应msnv的兴趣。我们的研究结果为MSNV中实时用户建模的可行性提供了证据,因为我们是第一个在处理多模态文档时考虑眼动追踪数据来预测任务理解和认知能力的人。接下来,我们将讨论对个性化msnv设计的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信