Database principles in information extraction

B. Kimelfeld
{"title":"Database principles in information extraction","authors":"B. Kimelfeld","doi":"10.1145/2594538.2594563","DOIUrl":null,"url":null,"abstract":"Information Extraction commonly refers to the task of populating a relational schema, having predefined underlying semantics, from textual content. This task is pervasive in contemporary computational challenges associated with Big Data. This tutorial gives an overview of the algorithmic concepts and techniques used for performing Information Extraction tasks, and describes some of the declarative frameworks that provide abstractions and infrastructure for programming extractors. In addition, the tutorial highlights opportunities for research impact through principles of data management, illustrates these opportunities through recent work, and proposes directions for future research.","PeriodicalId":302451,"journal":{"name":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594538.2594563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Information Extraction commonly refers to the task of populating a relational schema, having predefined underlying semantics, from textual content. This task is pervasive in contemporary computational challenges associated with Big Data. This tutorial gives an overview of the algorithmic concepts and techniques used for performing Information Extraction tasks, and describes some of the declarative frameworks that provide abstractions and infrastructure for programming extractors. In addition, the tutorial highlights opportunities for research impact through principles of data management, illustrates these opportunities through recent work, and proposes directions for future research.
信息抽取中的数据库原理
信息抽取通常是指从文本内容中填充具有预定义底层语义的关系模式的任务。这一任务在与大数据相关的当代计算挑战中普遍存在。本教程概述了用于执行信息提取任务的算法概念和技术,并描述了为编程提取器提供抽象和基础设施的一些声明性框架。此外,本教程强调了通过数据管理原理产生研究影响的机会,通过最近的工作说明了这些机会,并提出了未来研究的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信