{"title":"Database principles in information extraction","authors":"B. Kimelfeld","doi":"10.1145/2594538.2594563","DOIUrl":null,"url":null,"abstract":"Information Extraction commonly refers to the task of populating a relational schema, having predefined underlying semantics, from textual content. This task is pervasive in contemporary computational challenges associated with Big Data. This tutorial gives an overview of the algorithmic concepts and techniques used for performing Information Extraction tasks, and describes some of the declarative frameworks that provide abstractions and infrastructure for programming extractors. In addition, the tutorial highlights opportunities for research impact through principles of data management, illustrates these opportunities through recent work, and proposes directions for future research.","PeriodicalId":302451,"journal":{"name":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2594538.2594563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Information Extraction commonly refers to the task of populating a relational schema, having predefined underlying semantics, from textual content. This task is pervasive in contemporary computational challenges associated with Big Data. This tutorial gives an overview of the algorithmic concepts and techniques used for performing Information Extraction tasks, and describes some of the declarative frameworks that provide abstractions and infrastructure for programming extractors. In addition, the tutorial highlights opportunities for research impact through principles of data management, illustrates these opportunities through recent work, and proposes directions for future research.