{"title":"Risk prediction of malware victimization based on user behavior","authors":"F. Lévesque, José M. Fernandez, Anil Somayaji","doi":"10.1109/MALWARE.2014.6999412","DOIUrl":null,"url":null,"abstract":"Understanding what types of users and usage are more conducive to malware infections is crucial if we want to establish adequate strategies for dealing and mitigating the effects of computer crime in its various forms. Real-usage data is therefore essential to make better evidence-based decisions that will improve users' security. To this end, we performed a 4-month field study with 50 subjects and collected real-usage data by monitoring possible infections and gathering data on user behavior. In this paper, we present a first attempt at predicting risk of malware victimization based on user behavior. Using neural networks we developed a predictive model that has an accuracy of up to 80% at predicting user's likelihood of being infected.","PeriodicalId":151942,"journal":{"name":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MALWARE.2014.6999412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Understanding what types of users and usage are more conducive to malware infections is crucial if we want to establish adequate strategies for dealing and mitigating the effects of computer crime in its various forms. Real-usage data is therefore essential to make better evidence-based decisions that will improve users' security. To this end, we performed a 4-month field study with 50 subjects and collected real-usage data by monitoring possible infections and gathering data on user behavior. In this paper, we present a first attempt at predicting risk of malware victimization based on user behavior. Using neural networks we developed a predictive model that has an accuracy of up to 80% at predicting user's likelihood of being infected.