Shape-preserving Swapping Autoencoder for Garment Texture Transfer

Yongxing He, Wei Li, Yongchuan Tang
{"title":"Shape-preserving Swapping Autoencoder for Garment Texture Transfer","authors":"Yongxing He, Wei Li, Yongchuan Tang","doi":"10.1109/IHMSC55436.2022.00054","DOIUrl":null,"url":null,"abstract":"Garment image synthesis became possible since GAN has achieved great success in the field of image generation. However, the works in this area are limited. This paper is focused on solving the problem of swapping the texture of clothing images. Existing methods like SwappingAE and style transfer can not solve this problem well. A shape-preserving swapping autoencoder (SP-SwappingAE) is proposed to solve the clothing swapping problem. Comparing to SwappingAE, we proposed a condition discriminator to retain the structure of input images. To verify our proposed method, we collect a clothing dataset, named FCI, including 60,000 different types of upper garment images. Experiment results on FCI dataset showed that our proposed method beat SwappingAE and the style transfer algorithm. The high-resolution result shows that the swapped images have realistic texture and structure. In future works, we will explore more clothing design methods with artificial intelligence.","PeriodicalId":447862,"journal":{"name":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC55436.2022.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Garment image synthesis became possible since GAN has achieved great success in the field of image generation. However, the works in this area are limited. This paper is focused on solving the problem of swapping the texture of clothing images. Existing methods like SwappingAE and style transfer can not solve this problem well. A shape-preserving swapping autoencoder (SP-SwappingAE) is proposed to solve the clothing swapping problem. Comparing to SwappingAE, we proposed a condition discriminator to retain the structure of input images. To verify our proposed method, we collect a clothing dataset, named FCI, including 60,000 different types of upper garment images. Experiment results on FCI dataset showed that our proposed method beat SwappingAE and the style transfer algorithm. The high-resolution result shows that the swapped images have realistic texture and structure. In future works, we will explore more clothing design methods with artificial intelligence.
服装纹理传输的保形交换自动编码器
由于GAN在图像生成领域取得了巨大的成功,服装图像合成成为可能。然而,这方面的工作是有限的。本文主要研究服装图像纹理的交换问题。现有的SwappingAE、风格转移等方法并不能很好地解决这一问题。为了解决服装交换问题,提出了一种形状保持交换自动编码器(SP-SwappingAE)。与SwappingAE相比,我们提出了一种条件判别器来保持输入图像的结构。为了验证我们提出的方法,我们收集了一个名为FCI的服装数据集,其中包括60,000种不同类型的内衣图像。在FCI数据集上的实验结果表明,该方法优于SwappingAE和风格转移算法。高分辨率结果表明,交换后的图像具有真实的纹理和结构。在未来的作品中,我们将会探索更多运用人工智能的服装设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信