Wei Bao, Dong Yuan, Zhengjie Yang, Shen Wang, B. Zhou, Stewart Adams, Albert Y. Zomaya
{"title":"sFog: Seamless Fog Computing Environment for Mobile IoT Applications","authors":"Wei Bao, Dong Yuan, Zhengjie Yang, Shen Wang, B. Zhou, Stewart Adams, Albert Y. Zomaya","doi":"10.1145/3242102.3242107","DOIUrl":null,"url":null,"abstract":"Fog computing is a promising solution to provide low-latency and ubiquitously available computation offloading services to widely distributed Internet of Things (IoT) devices with limited computing capabilities. One obstacle, however, is how to seamlessly hand over mobile IoT devices among different fog nodes to avoid service interruption. In this paper, we propose seamless fog (sFog), a new framework supporting efficient congestion control and seamless handover schemes. Intrinsically, sFog improves system performance during handovers (achieved by the handover scheme), and guarantees the performance does not degrade when handovers do not occur (achieved by the congestion control scheme). Through the congestion control scheme, jobs are efficiently offloaded without causing unnecessary system idling; through the handover scheme, jobs are pre-migrated to the target fog node when a handover is about to occur, in order to reduce migration delay. In order to evaluate the performance of sFog, we propose a theoretical framework and establish a real-world prototype. Both the theoretical and experimental results show that sFog achieves substantial delay reductions compared with traditional benchmark handover schemes.","PeriodicalId":241359,"journal":{"name":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3242102.3242107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Fog computing is a promising solution to provide low-latency and ubiquitously available computation offloading services to widely distributed Internet of Things (IoT) devices with limited computing capabilities. One obstacle, however, is how to seamlessly hand over mobile IoT devices among different fog nodes to avoid service interruption. In this paper, we propose seamless fog (sFog), a new framework supporting efficient congestion control and seamless handover schemes. Intrinsically, sFog improves system performance during handovers (achieved by the handover scheme), and guarantees the performance does not degrade when handovers do not occur (achieved by the congestion control scheme). Through the congestion control scheme, jobs are efficiently offloaded without causing unnecessary system idling; through the handover scheme, jobs are pre-migrated to the target fog node when a handover is about to occur, in order to reduce migration delay. In order to evaluate the performance of sFog, we propose a theoretical framework and establish a real-world prototype. Both the theoretical and experimental results show that sFog achieves substantial delay reductions compared with traditional benchmark handover schemes.