Learning Approach For Fast Approximate Matrix Factorizations

Haiyan Yu, Zhen Qin, Zhihui Zhu
{"title":"Learning Approach For Fast Approximate Matrix Factorizations","authors":"Haiyan Yu, Zhen Qin, Zhihui Zhu","doi":"10.1109/icassp43922.2022.9747165","DOIUrl":null,"url":null,"abstract":"Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix A of much smaller size, and then computing the orthonormal basis as well as low-rank factorizations of the tall matrix XA. While a random matrix A is the de facto choice, in this work, we improve upon its performance by utilizing a learning approach to find an adaptive sketching matrix A from a set of training data. We derive a closed-form formulation for the gradient of the training problem, enabling us to use efficient gradient-based algorithms. We also extend this approach for learning structured sketching matrix, such as the sparse sketching matrix that performs as selecting a few number of representative columns from the input data. Our experiments on both synthetical and real data show that both learned dense and sparse sketching matrices outperform the random ones in finding the approximate orthonormal basis and low-rank approximations.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Efficiently computing an (approximate) orthonormal basis and low-rank approximation for the input data X plays a crucial role in data analysis. One of the most efficient algorithms for such tasks is the randomized algorithm, which proceeds by computing a projection XA with a random sketching matrix A of much smaller size, and then computing the orthonormal basis as well as low-rank factorizations of the tall matrix XA. While a random matrix A is the de facto choice, in this work, we improve upon its performance by utilizing a learning approach to find an adaptive sketching matrix A from a set of training data. We derive a closed-form formulation for the gradient of the training problem, enabling us to use efficient gradient-based algorithms. We also extend this approach for learning structured sketching matrix, such as the sparse sketching matrix that performs as selecting a few number of representative columns from the input data. Our experiments on both synthetical and real data show that both learned dense and sparse sketching matrices outperform the random ones in finding the approximate orthonormal basis and low-rank approximations.
快速近似矩阵分解的学习方法
有效地计算输入数据X的(近似)标准正交基和低秩近似在数据分析中起着至关重要的作用。对于这类任务,最有效的算法之一是随机算法,它首先用一个小得多的随机素描矩阵a计算一个投影XA,然后计算高矩阵XA的标准正交基和低秩分解。虽然随机矩阵a是事实上的选择,但在这项工作中,我们通过利用学习方法从一组训练数据中找到自适应素描矩阵a来提高其性能。我们推导了训练问题梯度的封闭形式公式,使我们能够使用高效的基于梯度的算法。我们还扩展了这种方法来学习结构化素描矩阵,例如从输入数据中选择一些代表性列的稀疏素描矩阵。我们在综合数据和真实数据上的实验表明,在寻找近似标准正交基和低秩近似方面,学习的密集和稀疏素描矩阵都优于随机素描矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信